【题目】已知(且)是R上的奇函数,且.
(1)求的解析式;
(2)若关于x的方程在区间内只有一个解,求m的取值集合;
(3)设,记,是否存在正整数n,使不得式对一切均成立?若存在,求出所有n的值,若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)求的极值;
(2)若函数在定义域内为增函数,求实数的取值范围;
(3)设,若函数存在两个零点,且满足,问:函数在处的切线能否平行于轴?若能,求出该切线方程,若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b-c)sinB+(2c-b)sinC..
(1)求角A的大小;
(2)若sinB+sinC=,试判断△ABC的形状.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列关于随机变量及分布的说法正确的是( )
A.抛掷均匀硬币一次,出现正面的次数是随机变量
B.某人射击时命中的概率为0.5,此人射击三次命中的次数服从两点分布
C.离散型随机变量的分布列中,随机变量取各个值的概率之和可以小于1
D.离散型随机变量的各个可能值表示的事件是彼此互斥的
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在工业生产中,对一正三角形薄钢板(厚度不计)进行裁剪可以得到一种梯形钢板零件,现有一边长为3(单位:米)的正三角形钢板(如图),沿平行于边的直线将剪去,得到所需的梯形钢材,记这个梯形钢板的周长为 (单位:米),面积为(单位:平方米).
(1)求梯形的面积关于它的周长的函数关系式;
(2)若在生产中,梯形的面积与周长之比(即)达到最大值时,零件才能符合使用要求,试确定这个梯形的周长为多时,该零件才可以在生产中使用?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一艘轮船在航行中燃料费和它的速度的立方成正比.已知速度为每小时10千米时,燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问轮船的速度是多少时,航行1千米所需的费用总和最少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在等腰梯形ABCD中,,,,E为AD中点,点O,F分别为BE,DE的中点,将沿BE折起到的位置,使得平面平面BCDE(如图).
(1)求证:;
(2)求直线与平面所成角的正弦值;
(3)侧棱上是否存在点P,使得平面?若存在,求出的值;若不存在,请说明理由
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com