精英家教网 > 高中数学 > 题目详情

(本小题满分12分)已知f(x)=(x∈R)在区间[-1,1]上是增函数.
(Ⅰ)求实数a的值组成的集合A;
(Ⅱ)设关于x的方程f(x)=的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.

(1)A={a|-1≤a≤1}(2){m|m≥2,或m≤-2}.

解析试题分析:解:(Ⅰ)f'(x)==
∵f(x)在[-1,1]上是增函数,∴f'(x)≥0对x∈[-1,1]恒成立,
即x2-ax-2≤0对x∈[-1,1]恒成立.       ①
(x)=x2-ax-2,
①    
∵对x∈[-1,1],f(x)是连续函数,且只有当a=1时,f'(-1)=0以及当a=-1时,f'(1)=0,∴A={a|-1≤a≤1}.    
(Ⅱ)由=,得x2-ax-2=0,  ∵△=a2+8>0
∴x1,x2是方程x2-ax-2=0的两非零实根,
∴   从而|x1-x2|==.
∵-1≤a≤1,∴|x1-x2|=≤3.
要使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,
当且仅当m2+tm+1≥3对任意t∈[-1,1]恒成立,
即m2+tm-2≥0对任意t∈[-1,1]恒成立.       ②
设g(t)=m2+tm-2=mt+(m2-2),
         g(-1)=m2-m-2≥0,
② 
g(1)=m2+m-2≥0,      n m≥2或m≤-2.
所以,存在实数m,使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,其取值范围是{m|m≥2,或m≤-2}.
考点:函数与方程,以及不等式的综合
点评:解决该试题的关键是利用的单调性分离参数的思想得到参数a的范围,同时利用不等式的恒成立来分析得到m的范围,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若无极值点,但其导函数有零点,求的值;
(Ⅱ)若有两个极值点,求的取值范围,并证明的极小值小于

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)
(2)是否存在实数,使上的最小值为,若存在,求出的值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求由曲线所围成的平面图形的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线过点P(1,3),且在点P处的切线
恰好与直线垂直.求 (Ⅰ) 常数的值; (Ⅱ)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知函数
(1)求
(2)求过点A(0,16)的曲线的切线方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
,点P(,0)是函数的图象的一个公共点,两函数的图象在点P处有相同的切线.
(1)用表示a,b,c;
(2)若函数在(-1,3)上单调递减,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在区间[0,1]上是增函数,在区间上是减函数,又
(Ⅰ)求的解析式;
(Ⅱ)若在区间(m>0)上恒有成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数,其中.
(I)求函数的导函数的最小值;
(II)当时,求函数的单调区间及极值;
(III)若对任意的,函数满足,求实数的取值范围.

查看答案和解析>>

同步练习册答案