精英家教网 > 高中数学 > 题目详情
12.已知点P在线段AB上且$\overrightarrow{AP}=\overrightarrow{PB}$,若$\overrightarrow{AB}=λ\overrightarrow{PB}$,则λ=2.

分析 由题意得$\overrightarrow{AB}=λ\overrightarrow{PB}$=$\overrightarrow{AP}$+$\overrightarrow{PB}$=2$\overrightarrow{PB}$,从而解得.

解答 解:∵$\overrightarrow{AP}=\overrightarrow{PB}$,
∴$\overrightarrow{AB}=λ\overrightarrow{PB}$=$\overrightarrow{AP}$+$\overrightarrow{PB}$=2$\overrightarrow{PB}$,
∴λ=2,
故答案为:2.

点评 本题考查了平面向量的线性运算的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设集合A={x|1≤x≤6,x∈N},对于A的每个非空子集,定义其“交替和”如下:把集合中的数按从大到小的顺序排列,然后从最大的数开始交替地加减各数(如:{1,2,5}的“交替和”是5-2+1=4,{6,3}的“交替和”就是6-3=3,{3}的“交替和”就是3).则集合A的所有这些“交替和”的总和为(  )
A.128B.192C.224D.256

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等比数列{an}的公比q>0,其n前项和为Sn,若a1=1,4a3=a2a4
(Ⅰ)求公比q和a5的值;
(Ⅱ)求证:$\frac{{S}_{n}}{{a}_{n}}$<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知二次函数f(x)=x2-4x+1.
(1)当x∈[-2,1]时,求函数的最值;
(2)当x∈[-2,3]时,求函数的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合A={(x,y)|x2+(y+1)2≤1},B={(x,y)|$\sqrt{3}$x+y=4m},命题p:A∩B=∅,命题q:方程$\frac{{x}^{2}}{2m}$+$\frac{{y}^{2}}{1-m}$=1表示焦点在y轴上的椭圆.
(1)若命题p为真命题,求实数m的取值范围;
(2)若“p∨q”为真,“p∧q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.AB.AD?α,CB,CD?β,E∈AB.F∈BC,G∈CD,H∈DA,若直线EH与FG相交于点P,则P点必在直线BD上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.化简:
(1)$\frac{sinθ-cosθ}{tanθ-1}$.
(2)$\sqrt{si{n}^{2}θ-si{n}^{4}θ}$,θ是第二象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)是定义在R上的以2为周期的奇函数,当x∈[-1,1]时,f(x)=x2
(1)当x∈[1,3]时,求f(x)的表达式;
(2)求f(-3),f(3.5)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知椭圆$\left\{\begin{array}{l}{x=3cosθ}\\{y=\sqrt{5}sinθ}\end{array}\right.$(θ为参数)的左、右焦点分别为F1、F2,一直线经过右焦点F2,且与椭圆的长轴垂直,若该直线与该极坐标系中的曲线C:ρ=3交于A、B两点,则△F1AB的面积为4$\sqrt{5}$.

查看答案和解析>>

同步练习册答案