【题目】已知A={x|x2+x>0},B={x|x2+ax+b≤0},且A∩B={x|0<x≤2},A∪B=R,求a、b的值.
【答案】解:集合A={x|x2+x>0}={x|x<﹣1或x>0}
∵A∪B=R
∴B中的元素至少有{x|﹣1≤x≤0}
∵A∩B={x|0<x≤2},
∴B={x|﹣1≤x≤2}
∴﹣1,2是方程x2+ax+b=0的两个根,
∴a=﹣1,b=﹣2
即a,b的值分别是﹣1,﹣2
【解析】根据集合A,求得集合A,由A∪B且A∩B求出集合B,根据不等式的解集与方程根之间的关系,利用韦达定理即可求得a,b的值,从而求得结果.
【考点精析】解答此题的关键在于理解集合的交集运算的相关知识,掌握交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(ax﹣1)(x+b),如果不等式f(x)>0的解集是(﹣1,3),则不等式f(﹣x)<0的解集是( )
A.(﹣∞,﹣1)∪(3,+∞)
B.(﹣3,1)
C.(﹣∞,﹣3)∪(1,+∞)
D.(﹣1,3)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了得到周期y=sin(2x+ )的图象,只需把函数y=sin(2x﹣ )的图象( )
A.向左平移 个单位长度
B.向右平移 个单位长度
C.向左平移 个单位长度
D.向右平移 个单位长度
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 、 是两个不共线的向量,且 =(cosα,sinα), =(cosβ,sinβ).
(1)求证: + 与 ﹣ 垂直;
(2)若α∈(﹣ , ),β= ,且| + |= ,求sinα.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线m:2x﹣y﹣3=0与直线n:x+y﹣3=0的交点为P.
(1)若直线l过点P,且点A(1,3)和点B(3,2)到直线l的距离相等,求直线l的方程;
(2)若直线l1过点P且与x,y正半轴交于A、B两点,△ABO的面积为4,求直线l1的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD为矩形,四边形ADEF为梯形,AD∥FE,∠AFE=60°,∠AED=90°,且平面ABCD⊥平面ADEF,AF=FE=AB= AD=2,点G为AC的中点.
(Ⅰ)求证:平面BAE⊥平面DCE;
(Ⅱ)求三棱锥B﹣AEG的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知全集为全体实数R,集合A={x|3≤x≤7},B={x|2<x<10},C={x|x<a}.
(1)求(RA)∩B;
(2)若A∩C≠,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com