精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)写出的普通方程和的直角坐标方程;

(2)设点上,点上,求的最小值及此时的直角坐标.

【答案】(1) ;(2

【解析】试题分析:(Ⅰ)由题意消去参数即可求得C1的普通方程,利用极坐标与直角坐标的关系可得曲线C2的直角坐标方程;

利用)的结论结合点到直线距离公式得到距离函数,然后结合三角函数的有界性即可求得的最小值及此时的直角坐标.

试题解析:

1的普通方程为 的直角坐标方程为

2)由题意,可设点的直角坐标为因为是直线,所以的最小值即为的距离的最小值.

当且仅当时, 取得最小值,最小值为此时的直角坐标为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列各函数在其定义域中,既是奇函数,又是增函数的是(
A.y=x+1
B.y=﹣x3
C.y=﹣
D.y=x|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)定义在R上的奇函数,且在(﹣∞,0)上是增函数,又f(2)=0,则不等式xf(x+1)<0的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,在处取得极值.

1)求函数的解析式;

2)求函数上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数a>0, 方程 有且仅有两个不等实根,且较大的实根大于3,则实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一块半径为2的半圆形纸片,计划剪裁成等腰梯形ABCD的形状,它的下底AB是⊙O的直径,上底CD的端点在圆周上,设CD=2x,梯形ABCD的周长为y.
(1)求出y关于x的函数f(x)的解析式;
(2)求y的最大值,并指出相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不等式2x2﹣x﹣3>0解集为(
A.{x|﹣1<x< }??
B.{x|x> 或x<﹣1}??
C.{x|﹣ <x<1}??
D.{x|x>1或x<﹣ }

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若不等式x2﹣ax+b<0的解集为(1,2),则不等式 的解集为(
A.( ,+∞)
B.(﹣∞,0)∪( ,+∞)
C.( ,+∞)
D.(﹣∞,0)∪( ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】使函数y=sin(2x+θ)+ cos(2x+θ)为奇函数,且在[0, ]上是减函数的θ一个值为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案