【题目】已知抛物线,为其焦点,为其准线,过任作一条直线交抛物线于两点,、分别为、在上的射影,为的中点,给出下列命题:
(1);(2);(3);
(4)与的交点的轴上;(5)与交于原点.
其中真命题的序号为_________.
【答案】(1)(2)(3)(4)(5)
【解析】
(1)由、在抛物线上,根据抛物线的定义可知,,从而有相等的角,由此可判断;
(2)取的中点,利用中位线即抛物线的定义可得,从而可得;
(3)由(2)知,平分,从而可得,根据,利用垂直于同一直线的两条直线平行,可得结论;
(4)取与轴的交点,可得,可得出的中点在轴上,从而得出结论;
(5)设直线的方程为,设点、,证明出、、三点共线,同理得出、、三点共线,由此可得出结论.
(1)由于、在抛物线上,且、分别为、在准线上的射影,
根据抛物线的定义可知,,则,,
,,则,
即,,则,即,(1)正确;
(2)取的中点,则,,即,
(2)正确;
(3)由(2)知,,,
,,,
平分,,由于,,(3)正确;
(4)取与轴的交点,则,轴,可知,
,即点为的中点,由(3)知,平分,过点,
所以,与的交点的轴上,(4)正确;
(5)设直线的方程为,设点、,则点、,
将直线的方程与抛物线的方程联立,消去得,,
由韦达定理得,,
直线的斜率为,
直线的斜率为,,
则、、三点共线,同理得出、、三点共线,
所以,与交于原点,(5)正确.
综上所述,真命题的序号为:(1)(2)(3)(4)(5).
故答案为:(1)(2)(3)(4)(5).
科目:高中数学 来源: 题型:
【题目】如图,已知曲线,曲线,P是平面上一点,若存在过点P的直线与都有公共点,则称P为“C1—C2型点”.
(1)在正确证明的左焦点是“C1—C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);
(2)设直线与有公共点,求证,进而证明原点不是“C1—C2型点”;
(3)求证:圆内的点都不是“C1—C2型点”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥S-ABCD中,底面ABCD是菱形,,为等边三角形,G是线段SB上的一点,且SD//平面GAC.
(1)求证:G为SB的中点;
(2)若F为SC的中点,连接GA,GC,FA,FG,平面SAB⊥平面ABCD,,求三棱锥F-AGC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】辊子是客家传统农具,南方农民犁开田地后,仍有大的土块.农人便用六片叶齿组成辊轴,两侧装上木板,人跨开两脚站立,既能掌握平衡,又能增加重量,让牛拉动辊轴前进,压碎土块,以利于耕种.这六片叶齿又对应着菩萨六度,即布施持戒忍辱精进禅定与般若.若甲乙每人依次有放回地从这六片叶齿中随机取一片,则这两人选的叶齿对应的“度”相同的概率为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程为(其中为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)若点在直线上,且,求直线的斜率;
(2)若,求曲线上的点到直线的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数将的图象上所有点向左平移个单位,然后纵坐标不变,横坐标缩短为原来的,得到函数的图象.若为偶函数,且最小正周期为,则( )
A.图象与对称B.在单调递增
C.在有且仅有3个解D.在有仅有3个极大值点
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com