精英家教网 > 高中数学 > 题目详情
正方体中,异面直线所成角度为            .

试题分析:如图,连结,由正方体的性质可知,所以或其补角为异面直线所成的角,而为正三角形,所以,故异面直线所成的角为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,边长为2的正方形ACDE所在的平面与平面ABC垂直,AD与CE的交点为M,,且AC=BC.
(1)求证:平面EBC;
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在空间直角坐标系O-xyz中,正四棱锥P-ABCD的侧棱长与底边长都为,点M,N分别在PA,BD上,且

(1)求证:MN⊥AD;
(2)求MN与平面PAD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)在三棱柱中,侧面为矩形,的中点,交于点侧面.

(1)证明:
(2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在三棱锥中,是边长为2的正三角形,平面平面,,分别为的中点.

(1)证明:;
(2)求锐二面角的余弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若四棱柱的底面是边长为1的正方形,且侧棱垂直于底面,若与底面成60°角,则二面角的平面角的正切值为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在二面角中,且 , , 则二面角的余弦值为________________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在三棱柱ABC-A1B1C1中,各棱长相等,侧棱垂直于底面,点D是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是 (  ).
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正三棱锥P—ABC中,CM=2PM,CN=2NB,对于以下结论:

①二面角B—PA—C大小的取值范围是(,π);
②若MN⊥AM,则PC与平面PAB所成角的大小为
③过点M与异面直线PA和BC都成的直线有3条;
④若二面角B—PA—C大小为,则过点N与平面PAC和平面PAB都成的直线有3条.
正确的序号是         

查看答案和解析>>

同步练习册答案