精英家教网 > 高中数学 > 题目详情
3.三个数60.7,(0.7)6,log0.76的大小顺序是(  )
A.(0.7)6<60.7<log0.76B.${({0.7})^6}<{log_{0.7}}6<{6^{0.7}}$
C.${log_{0.7}}6<{({0.7})^6}<{6^{0.7}}$D.${log_{0.7}}6<{6^{0.7}}<{({0.7})^6}$

分析 利用指数函数与对数函数的单调性即可得出.

解答 解:60.7>1,0<(0.7)6<1,log0.76<0,
可得60.7>(0.7)6>log0.76.
故选:C.

点评 本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若loga$\frac{2}{3}$>1(a>0且a≠1),则实数a的解集是{a|$\frac{2}{3}$<a<1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数f(x)同时满足:①对于定义域上的任意x,恒有f(x)+f(-x)=0;②对于定义域上的任意x1,x2,当x1≠x2时,恒有(x1-x2)[f(x1)-f(x2)]<0,则称函数f(x)为“优美函数”,则下列函数中是“优美函数”的是(  )
A.f(x)=ex+e-xB.f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$
C.f(x)=lg($\sqrt{{x}^{2}+1}-x$)D.f(x)=$\left\{\begin{array}{l}{{x}^{2},}&{x≥0}\\{-{x}^{2},}&{x<0}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设an=$\frac{|sin1|}{2}$+$\frac{|sin2|}{{2}^{2}}$+…+$\frac{|sinn|}{{2}^{n}}$,则对任意正整数m,n(m>n)都成立的是(  )
A.am-an<$\frac{1}{{2}^{n}}$B.am-an>$\frac{1}{{2}^{n}}$C.am-an<$\frac{1}{{2}^{m}}$D.am-an>$\frac{m-n}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合M={x|0≤x≤2},N={x|x-2=0},则下列说法正确的是(  )
A.N∈MB.N⊆MC.M⊆ND.M∈N

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)定义域为x∈[-1,1]且为奇函数.当x∈[-1,0)时,$f(x)=\frac{1}{4^x}-\frac{1}{2^x}$,则f(x)在x∈[-1,1]上的值域为[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知定义域为R的函数f(x),对于x∈R,满足f[f(x)-x2+x]=f(x)-x2+x,设有且仅有一个实数x0,使得f(x0)=x0,则实数x0的值为(  )
A..0B..1C.0或1D..无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知命题p的否命题是“若A?B,则∁UA∩∁UB=∁UB”,写出命题p的逆否命题是若∁UA∩∁UB=∁UB,则A?B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知圆C的圆心在y轴的正半轴上,且与x轴相切,圆C与直线y=kx+3相交于A,B两点.当$k=\sqrt{3}$时,$|AB|=\sqrt{15}$.
(Ⅰ)求圆C的方程;
(Ⅱ)当k取任意实数时,问:在y轴上是否存在定点T,使得∠ATB始终被y轴平分?若存在,求出点T的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案