精英家教网 > 高中数学 > 题目详情
5.定义在R上的奇函数f(x)是周期为2的周期函数,当x∈[0,1)时,f(x)=2x-1,则f(log23)的值为-$\frac{1}{3}$.

分析 由奇函数和周期函数的定义,转化f(log23)=-f(log2$\frac{4}{3}$),再由已知条件,结合对数恒等式计算即可得到所求值.

解答 解:定义在R上的奇函数f(x)是周期为2的周期函数,
可得f(log23)=-f(-log23)=-f(2-log23)=-f(log2$\frac{4}{3}$),
由当x∈[0,1)时,f(x)=2x-1,
可得f(log2$\frac{4}{3}$)=2${\;}^{lo{g}_{2}\frac{4}{3}}$-1=$\frac{4}{3}$-1=$\frac{1}{3}$,
则f(log23)=-$\frac{1}{3}$,
故答案为:-$\frac{1}{3}$.

点评 本题考查函数的奇偶性和周期性的运用,注意定义和转化思想的运用,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.函数y=3tan(2x+$\frac{5π}{6}$)的最小正周期为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和,${S_n}=\frac{{3{n^2}-n}}{2}$.
(1)求{an}的通项公式;
(2)设${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,数列{bn}的前n项和为Tn,若对?n∈N*,t≤4Tn恒成立,求实数t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求满足下列条件的椭圆的标准方程.
(1)焦点在y轴上,c=6,$e=\frac{2}{3}$;
(2)短轴的一个端点到一个焦点的距离为5,焦点到椭圆中心的距离为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的两条渐进线与抛物线y2=-8x的准线分别交于A,B两点,O为坐标原点,若△ABO的面积为$4\sqrt{3}$,则双曲线的离心率为(  )
A.$\frac{{\sqrt{7}}}{2}$B.2C.$\sqrt{13}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图的三视图所对应的立体图形可以是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,若a=2,b+c=7,$cosB=-\frac{1}{4}$.
(1)求b的值;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若正三棱锥P-ABC(底面是正三角形,顶点P在底面的射影是△ABC的中心)满足|$\overrightarrow{PA}$+$\overrightarrow{PB}$|=|$\overrightarrow{AB}$|=4$\sqrt{3}$,则该三棱锥外接球球心O到平面ABC的距离为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若直线y=kx+3与直线y=$\frac{1}{k}$x-5的交点在第一象限,则k的取值范围是0<k<1.

查看答案和解析>>

同步练习册答案