精英家教网 > 高中数学 > 题目详情
7.下列函数中值域为(0,+∞)的是(  )
A.$y={2}^{{x}^{2}+1}$B.y=$\frac{x+2}{x-1}$C.y=$\sqrt{1-{2}^{x}}$D.y=$(\frac{1}{3})^{1-x}$

分析 根据函数单调性和值域的关系进行求解判断即可.

解答 解:$y={2}^{{x}^{2}+1}$≥21=2,即函数的值域为[2,+∞),
y=$\frac{x+2}{x-1}$=$\frac{x-1+3}{x-1}$=1+$\frac{3}{x-1}$≠1,即函数的值域为(-∞,1)∪(1,+∞),
∵1-2x≥0,∴y=$\sqrt{1-{2}^{x}}$≥0,即函数的值域为[0,+∞),
y=$(\frac{1}{3})^{1-x}$>0,即函数的值域为(0,+∞),
故选:D

点评 本题主要考查函数值域的求解,利用函数单调性的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=2-|x-1|-m没有零点,实数m的取值范围是m≤0,或m>1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.${log_2}\frac{2}{3}+{log_2}\frac{3}{2}+{(\frac{8}{27})^{-\frac{1}{3}}}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.求数列$\frac{1}{2×3},\frac{1}{3×4},\frac{1}{4×5},…\frac{1}{(n+1)(n+2)}$的前n项和Sn=$\frac{n}{2(n+2)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.等差数列{an}的前k项和为28,前2k项和为76,则它的前3k项和为(  )
A.104B.124C.134D.144

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知sin(α-π)=$\sqrt{3}$cos(2π-α),且cosα>sinα.
(1)利用三角函数的定义求sinα,cosα的值.
(2)若α∈(-$\frac{π}{2}$,$\frac{π}{2}$),令f(x)=tan(x+α),试求f(x)的单调区间,并求在区间[$\frac{π}{6}$,$\frac{2π}{3}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数y=f(x-1)的图象关于点(1,0)成中心对称,且当(-∞,0)时,f(x)+xf′(x)<0成立(其中f′(x)是f(x)的导函数),若a=(30.3)•f(30.3),$b=({log_9}3)•f({log_9}3),c=({log_3}\frac{1}{9})•f({log_3}\frac{1}{9})$,则a、b、c的大小关系是(  )
A.a>b>cB.c>a>bC.c>b>aD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,正方形AEFD边长为4,N是DF中点,BC=BE=2,沿着EF将直角梯形BEFC翻折为直角梯形B1EFC1,使AB1=2$\sqrt{3}$.(2)线段B1E上是否存在一点M,使FM∥平面AB1N,若存在,试确定点M的位置,若不存在,请说明理由;
(3)若平面AB1N与平面B1C1FE交线为B1P,试求线段C1F上点P的位置,
并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设p:(x-2)(y-5)≠0;q:x≠2或y≠5;γ:x+y≠7.则下列命题:
①p是γ的既不充分也不必要条件;
②p是q的充分不必要条件;
③q是γ的必要不充分条件.
其中全部真命题有(  )
A.①②B.①③C.②③D.①②③

查看答案和解析>>

同步练习册答案