精英家教网 > 高中数学 > 题目详情
(2012•嘉定区三模)设向量
a
=(x , 2)
b
=(x+n , 2x-1)
(n∈N*),函数y=
a
b
在x∈[0,1]上的最小值与最大值的和为an,又数列{bn}满足b1=1,b1+b2+…+bn=(
9
10
)n-1

(1)求证:an=n+1;
(2)求数列{bn}的通项公式;
(3)设cn=-an•bn,试问数列{cn}中,是否存在正整数k,使得对于任意的正整数n,都有cn≤ck成立?若存在,求出所有满足条件的k的值;若不存在,请说明理由.
分析:(1)利用函数y=
a
b
在x∈[0,1]上的最小值与最大值的和为an,结合向量数量积公式,可得结论;
(2)再写一式,两式相减,即可求数列{bn}的通项公式;
(3)由题意,ck为{cn}的最大项,则k≥2,要使ck为最大值,则
ckck-1
ckck+1
,解不等式,即可求得k的取值.
解答:(1)证明:由已知,y=x(x+n)+2(2x-1)=x2+(4+n)x-2…(2分)
而函数y在x∈[0,1]上是增函数,…(3分)
所以an=-2+1+4+n-2=n+1.…(4分)
(2)解:因为b1+b2+…+bn=(
9
10
)
n-1

所以b1+b2+…+bn-1=(
9
10
)
n-2
(n≥2),…(6分)
两式相减,得bn=-
1
10
•(
9
10
)n-2
(n≥2).…(8分)
所以,数列{bn}的通项公式为bn=
1,n=1
-
1
10
(
9
10
)
n-2
,n≥2
…(10分)
(3)解:因为c1=-a1•b1=-2<0,cn=-an•bn=
n+1
10
(
9
10
)
n-2
>0(n≥2),…(12分)
由题意,ck为{cn}的最大项,则k≥2,
要使ck为最大值,则
ckck-1
ckck+1
 …(13分)
k+1
10
(
9
10
)
k-2
k
10
(
9
10
)
k-3
k+1
10
(
9
10
)
k-2
k+2
10
(
9
10
)
k-1
   …(14分)
解得k=9或k=8. …(15分)
所以存在k=8或9,使得cn≤ck成立.…(16分)
点评:本题考查数列与向量的综合,考查数列的通项,考查恒成立问题,求得数列的通项是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•嘉定区三模)已知动圆圆心在抛物线y2=4x上,且动圆恒与直线x=-1相切,则此动圆必过定点
(1,0)
(1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•嘉定区三模)下列命题中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•嘉定区三模)在直角坐标系xOy中,直线l的参数方程是
x=t
y=
3
t
(l为参数),以Ox的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2cosθ,则圆C上的点到直线l距离的最大值是
3
2
+1
3
2
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•嘉定区三模)设集合A={x|x<1,x∈R},B={x|x2<4,x∈R},则A∩B=
{x|-2<x<1}
{x|-2<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•嘉定区三模)设a、b∈R,i为虚数单位,若(a+i)i=b+i,则复数z=a+bi的模为
2
2

查看答案和解析>>

同步练习册答案