精英家教网 > 高中数学 > 题目详情
(2012•黄浦区二模)已知定点F(2,0),直线l:x=-2,点P为坐标平面上的动点,过点P作直线l的垂线,垂足为点Q,且
FQ
⊥(
PF
+
PQ
)

(1)求动点P所在曲线C的方程;
(2)直线l1过点F与曲线C交于A、B两个不同点,求证:
1
|AF|
+
1
|BF|
=
1
2

(3)记
OA
OB
的夹角为θ(O为坐标原点,A、B为(2)中的两点),求cosθ的最小值.
分析:(1)确定向量的坐标,利用
FQ
⊥(
PF
+
PQ
)
,得
FQ
•(
PF
+
PQ
)
=0,由此可求曲线C的方程;
(2)设直线l1的方程为x=my+2与抛物线方程联立,利用韦达定理,结合
1
|AF|
+
1
|BF|
=
1
x1+2
+
1
x2+2
,即可证得结论;
(3)确定
OA
=(x1,y1),
OB
=(x2,y2),利用cosθ=
OA
OB
|
OA
||
OB
|
,可求cosθ的取值范围.
解答:(1)解:设动点P(x,y).依据题意,可得
Q(-2,y),
FQ
=(-4,y),
PF
=(2-x,-y),
PQ
=(-2-x,0)
.    (3分)
FQ
⊥(
PF
+
PQ
)

于是,
FQ
•(
PF
+
PQ
)=0
,即y2=8x(x≥0).                 (6分)
因此,所求动点P的轨迹方程为C:y2=8x(x≥0).
(2)证明:∵直线l1过F点且与曲线C交于不同的A、B两点,
∴l1的斜率不为零,故设l1:x=my+2.                                   (7分)
联立方程组
y2=8x
x=my+2
得y2-8my-16=0.(8分)
设A(x1,y1),B(x2,y2),则
y1+y2=8m
y1y2=-16
,进一步得
x1+x2=8m2+4
x1x2=4.
(10分)
又∵曲线C:y2=8x(x≥0)的准线为:x=-2,
∴左边=
1
|FA|
+
1
|FB|
=
1
x1+2
+
1
x2+2
=
4+x1+x2
x1x2+2(x1+x2)+4
=
1
2
=右边.            (12分)
1
|FA|
+
1
|FB|
=
1
2
.证毕!
(3)解:由(2)可知,
OA
=(x1y1),
OB
=(x2y2)

cosθ=
OA
OB
|
OA
|•|
OB
|
=
x1x2+y1y2
x
2
1
+
y
2
1
x
2
2
+
y
2
2
=
-12
x
2
1
+8x1
x
2
2
+8x2
=
-6
100+64m2
≥-
3
5
(当且仅当m=0时,等号成立).     (16分)
(cosθ)min=-
3
5
.                                                              (18分)
点评:本题考查向量知识的运用,考查轨迹方程,考查直线与抛物线的位置关系,考查韦达定理的运用,考查计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•黄浦区二模)已知α、β∈(0,
π
2
),若cos(α+β)=
5
13
,sin(α-β)=-
4
5
,则cos2α=
63
65
63
65

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区二模)对n∈N*,定义函数fn(x)=-(x-n)2+n,n-1≤x≤n.
(1)求证:y=fn(x)图象的右端点与y=fn+1(x)图象的左端点重合;并回答这些端点在哪条直线上.
(2)若直线y=knx与函数fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的图象有且仅有一个公共点,试将kn表示成n的函数.
(3)对n∈N*,n≥2,在区间[0,n]上定义函数y=f(x),使得当m-1≤x≤m(n∈N*,且m=1,2,…,n)时,f(x)=fm(x).试研究关于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的实数解的个数(这里的kn是(2)中的kn),并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区二模)如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区二模)已知函数f(x)=|x2-2ax+a|(x∈R),给出下列四个命题:
①当且仅当a=0时,f(x)是偶函数;
②函数f(x)一定存在零点;
③函数在区间(-∞,a]上单调递减;
④当0<a<1时,函数f(x)的最小值为a-a2
那么所有真命题的序号是
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区二模)函数f(x)=log
1
2
(2x+1)
的定义域为
(-
1
2
,+∞)
(-
1
2
,+∞)

查看答案和解析>>

同步练习册答案