精英家教网 > 高中数学 > 题目详情
连掷两次骰子得到的点数分别为m和n,记向量a=(m,n)与向量b=(1,-1)的夹角为θ,则θ∈(0,]的概率是(    )

A.                    B.                    C.                   D.

解析:∵a·b=|a||b|cosθ,θ∈(0,],

a·b≥0,即m-n≥0,

∴满足条件的投掷骰子的种数为21种.

∴θ∈(0,]的概率是.

答案:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若连掷两次骰子,分别得到的点数是m、n,将m、n作为点P的坐标,则点P落在区域|x-2|+|y-2|≤2内的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若连掷两次骰子分别得到的点数是m、n,将m、n作为点P的坐标,则点P落在区域|x-2|+|y-2|≤2内的概率是(    )

A.             B.               C.               D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若连掷两次骰子,分别得到的点数是m、n,将m、n作为点P的坐标,则点P落在区域|x-2|+|y-2|≤2内的概率是(  )
A.
11
36
B.
1
6
C.
1
4
D.
7
36

查看答案和解析>>

科目:高中数学 来源:《第3章 概率》2013年单元测试卷(解析版) 题型:选择题

若连掷两次骰子,分别得到的点数是m、n,将m、n作为点P的坐标,则点P落在区域|x-2|+|y-2|≤2内的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

若连掷两次骰子,分别得到的点数是m、n,将m、n作为点P的坐标,则点P落在区域|x-2|+|y-2|≤2内的概率是(    )

A.              B.              C.            D.

查看答案和解析>>

同步练习册答案