精英家教网 > 高中数学 > 题目详情

【题目】过抛物线的焦点做直线交抛物线于两点,的最小值为2.

(1)求抛物线的标准方程;

(2)过分别做抛物线的切线,两切线交于点,且直线分别与轴交于点,记的面积分别为,求证:为定值.

【答案】(1)(2)证明见解析

【解析】

1)设直线,与抛物线方程联立可得韦达定理的形式,进而表示出,可知当时,最小,从而构造出关于的方程,解得,进而得到抛物线方程;(2)结合导数求得切线的斜率,得到两直线方程,从而解得坐标;两直线联立可解得;由可得到所求的比值为定值.

(1)由题意知,直线的斜率存在,设直线

联立方程得:

时,最小,此时,即:

抛物线的标准方程为:

(2)由

,而分别是以为切点的切线

直线,令得:

直线,令

则联立两直线方程,消去得:

,为定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《中华人民共和国道路交通安全法》第47条规定:机动车行经人行横道时,应当减速慢行;遇到行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”.下表是某十字路口监控设备所抓拍的6个月内驾驶员不“礼让斑马线”行为的统计数据:

月份

1

2

3

4

5

6

不“礼让斑马线”驾驶员人数

120

105

100

85

90

80

(Ⅰ)请根据表中所给前5个月的数据,求不“礼让斑马线”的驾驶员人数与月份之间的回归直线方程

(Ⅱ)若该十字路口某月不“礼让斑马线”驾驶员人数的实际人数与预测人数之差小于5,则称该十字路口“礼让斑马线”情况达到“理想状态”.试根据(Ⅰ)中的回归直线方程,判断6月份该十字路口“礼让斑马线”情况是否达到“理想状态”?

(Ⅲ)若从表中3、4月份分别选取4人和2人,再从所选取的6人中任意抽取2人进行交规调查,求抽取的两人恰好来自同一月份的概率.

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,已知点,直线:为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线和曲线的交点为

(1)求直线和曲线的普通方程;

(2)求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线.

(1)当时,求的单调区间;

(2)若对任意时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,记的导函数.

(1)若的极大值为,求实数的值;

(2)若函数,求上取到最大值时的值;

(3)若关于的不等式上有解,求满足条件的正整数的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的极值;

(2)当时,若对任意都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)对于实数,若,有,求证:方程有两个不相等的实数根;

2)若,函数,求函数在区间上的最大值和最小值;

3)若存在实数,使得对于任意实数,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥PABCD中,ABCD是矩形,PA=ABEPB的中点.

1)若过CDE的平面交PA于点F,求证:FPA的中点;

2)若平面PAB⊥平面PBC,求证:BCPA

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调增区间;

(2)若函数有两个极值点,且,证明:.

查看答案和解析>>

同步练习册答案