精英家教网 > 高中数学 > 题目详情

【题目】如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC上的点,AD=AE,F是BC的中点,AF与DE交于点G,△ABF沿AF折起,得到如图2所示的三棱锥A﹣BCF,其中BC=

(1)求证:平面DEG∥平面BCF;
(2)若D,E为AB,AC上的中点,H为BC中点,求异面直线AB与FH所成角的余弦值.

【答案】
(1)证明:如题图1,在等边三角形ABC中,AB=AC,

∵AD=AE,∴

∴DE∥BC,∴DG∥BF,

如题图2,∵DG平面BCF,

∴DG∥平面BCF,

同理可证EG∥平面BCF,

∵DG∩EG=G,

∴平面DEG∥平面BCF


(2)解:连EH,

∵EH是△CAB的中位线,

∴异面直线AB与FH所成角即为∠FHE

∴△BFC为RT△,∴

又∵

∴cos∠FHE= = =


【解析】

【考点精析】解答此题的关键在于理解异面直线及其所成的角的相关知识,掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系,以及对平面与平面平行的判定的理解,了解判断两平面平行的方法有三种:用定义;判定定理;垂直于同一条直线的两个平面平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x的不足近似值和过剩近似值分别为 (a,b,c,d∈N*),则 是x的更为精确的不足近似值或过剩近似值.我们知道π=3.14159…,若令 <π< ,则第一次用“调日法”后得 是π的更为精确的过剩近似值,即 <π< ,若每次都取最简分数,那么第四次用“调日法”后可得π的近似分数为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:函数f(x)对一切实数x,y都有f(x+y)﹣f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值.
(2)求f(x)的解析式.
(3)已知a∈R,设P:当0<x< 时,不等式f(x)+3<2x+a恒成立;Q:当x∈[﹣2,2]时,g(x)=f(x)﹣ax是单调函数.如果满足P成立的a的集合记为A,满足Q成立的a的集合记为B,求A∩RB(R为全集).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】批次的种灯泡个,对其寿命进行追踪调查,将结果列频率分布表如下,根据寿命将灯泡分成优等品、正品和次品三级,其中寿大于或等于的灯泡优等品,寿小于的灯泡次品,余的灯泡是正.

寿 (天)

频数

频率

合计

(1)根据频率分布表中的数据,写出的值;

(2)某人从这个灯泡中随机地购买了个,求此灯泡恰好不是次品的概率;

(3)某人从这批灯泡中随机地购买了个,如果这个灯泡的等级情況恰好与按三个等级分层抽样所得的结果相同,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,棱长为2的正方体ABCD﹣A1B1C1D1中,E为边AA1的中点,P为侧面BCC1B1上的动点,且A1P∥平面CED1 . 则点P在侧面BCC1B1轨迹的长度为(

A.2
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某校举行歌唱比赛时,七位评委为某位选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的中位数和平均数依次为(

A.87,86
B.83,85
C.88,85
D.82,86

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游爱好者计划从3个亚洲国家A1A2A33个欧洲国家B1B2B3中选择2个国家去旅游.

(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;

(2)若从亚洲国家和欧洲国家中各选1个,求这两个国家包括A1,但不包括B1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点Ai的横、纵坐标分别为第i名工人上午的工作时间和加工的学科&网零件数,点Bi的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.

①记Qi为第i名工人在这一天中加工的零件总数,则Q1Q2Q3中最大的是_________.

②记pi为第i名工人在这一天中平均每小时加工的零件数,则p1p2p3中最大的是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面几何中有如下结论:正三角形ABC的内切圆面积为S1 , 外接圆面积为S2 , 则 ,推广到空间可以得到类似结论;已知正四面体P﹣ABC的内切球体积为V1 , 外接球体积为V2 , 则 =

查看答案和解析>>

同步练习册答案