精英家教网 > 高中数学 > 题目详情

【题目】如图,正方体ABCD﹣A1B1C1D1中,E、F分别为棱DD1和BC中点G为棱A1B1上任意一点,则直线AE与直线FG所成的角为(

A.30°
B.45°
C.60°
D.90°

【答案】D
【解析】解:如图所示,建立空间直角坐标系.
不妨时棱长AB=2,则D(0,0,0),A(2,0,0),E(0,0,1),
F(1,2,0),G(2,t,2),t∈[0,2].
=(﹣2,0,1), =(1,t﹣2,2),
=﹣2+2=0,

∴直线AE与直线FG所成的角为90°
故选:D.

【考点精析】认真审题,首先需要了解异面直线及其所成的角(异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线交此抛物线于不同的两个点

)当直线过点时,证明为定值.

)当时,直线是否过定点?若过定点,求出定点坐标;反之,请说明理由.

)记,如果直线过点,设线段的中点为,线段的中点为.问是否存在一条直线和一个定点,使得点到它们的距离相等?若存在,求出这条直线和这个定点;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在成立,则称的不动点.如果函数

有且只有两个不动点0,2,且

(1)求函数的解析式;

(2)已知各项不为零的数列,求数列通项

(3)如果数列满足,求证:当时,恒有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图,梯形中,,,, ,将沿对角线折起.设折起后点的位置为,并且平面 平面.给出下面四个命题:

;②三棱锥的体积为;③ 平面

平面平面.其中正确命题的序号是( )

A. ①② B. ③④ C. ①③ D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示).规定80分及以上者晋级成功,否则晋级失败(满分100分).
(1)求图中a的值;
(2)根据已知条件完成下面2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?

晋级成功

晋级失败

合计

16

50

合计

(参考公式:K2= ,其中n=a+b+c+d)

P(K2≥k)

0.40

0.25

0.15

0.10

0.05

0.025

k

0.780

1.323

2.072

2.706

3.841

5.024


(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为X,求X的分布列与数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)过原点作曲线的切线,求直线的方程;

(Ⅱ)个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(满分12分)学习雷锋精神前半年内某单位餐厅的固定餐椅经常有损坏,学习雷锋精神时全修好;单位对学习雷锋精神前后各半年内餐椅的损坏情况作了一个大致统计,具体数据如下:


损坏餐椅数

未损坏餐椅数

总 计

学习雷锋精神前

50

150

200

学习雷锋精神后

30

170

200

总 计

80

320

400

)求:学习雷锋精神前后餐椅损坏的百分比分别是多少?并初步判断损毁餐椅数量与学习雷锋精神是否有关?

)请说明是否有975%以上的把握认为损毁餐椅数量与学习雷锋精神有关?

参考公式:

PK2≥k0

005

0025

0010

0005

0001

k0

3841

5024

6635

7879

10828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在汶川大地震后对唐家山堰塞湖的抢险过程中,武警官兵准备用射击的方法引爆从湖坝上游漂流而下的一个巨大的汽油罐.已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆.每次射击是相互独立的,且命中的概率都是
(Ⅰ)求油罐被引爆的概率;
(Ⅱ)如果引爆或子弹打光则停止射击,设射击次数为ξ.求ξ的分布列及数学期望E(ξ).( 结果用分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若不等式|2x﹣1|﹣|x+a|≥a对任意的实数x恒成立,则实数a的取值范围是(
A.(﹣∞,﹣ ]
B.(﹣ ,﹣ ]
C.(﹣ ,0)
D.(﹣∞,﹣ ]

查看答案和解析>>

同步练习册答案