精英家教网 > 高中数学 > 题目详情
2.若角α的余弦线长度为0,则它的正弦线的长度为1.

分析 直接利用角α的余弦线长度为0,推出角α的值,然后求出它的正弦线的长度.

解答 解:如图所示:在直角坐标系中,作出单位圆,把角α的顶放到原点,角的始边放到x轴的正半轴上.
设α的终边与单位圆的交点为B,单位圆和x轴的正半轴的交点为A,
再作BM⊥x轴,M为垂足,则有:OM=cosα,
由于:角α的余弦线长度为0,
所以:OM的长度变为0,则角α的终边在y轴上,α的终边与单位圆的交点为C,或D,
此时,α=kπ-$\frac{π}{2}$,k∈Z,它的正弦线的长度为:1.
故答案为:1.

点评 本题考查三角函数的值的求法,考查计算能力和数形结合思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=∠ACD=90°,∠EAC=60°,AB=AC=AE.
(1)若P是BC的中点,求证:DP∥平面EAB;
(2)求平面EBD与平面ACDE所成的锐二面角θ的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,过圆E外一点A作一条直线与圆E交于B,C两点,且AB=$\frac{1}{3}$AC,作直线AF与圆E相切于点F,连结EF交BC于点D,已知圆E的半径为2,∠EBC=30°.
(Ⅰ)求AF的长;
(Ⅱ)求$\frac{ED}{AD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.一个商人将子弹放进两种盒子里,每个大盒子装12个,每个小盒子装5个,恰好装完,如果子弹数为99,盒子数大于9,问两种盒子各有多少个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.己知直线l1:y=$\frac{1}{2}$x及直线l2:y=2x都与两不同的圆C1、C2相切,且圆C1、C2均过点P(1,$\frac{3}{2}$),则这两圆的圆心距|C1C2|=(  )
A.$\frac{\sqrt{13}}{2}$B.$\frac{4\sqrt{5}}{9}$C.$\frac{10\sqrt{119}}{9}$D.$\frac{4\sqrt{17}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知Sn是数列{an}的前n项和,且S10=10,S20=30,
(1)若{an}为等差数列,求S30
(2)若{an}为等比数列,求S30

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.过点P(4,2)作圆x2+y2=2的两条切线,切点分别为A,B,点O为坐标原点,则△AOB的外接圆方程是(  )
A.(x+2)2+(y+1)2=5B.(x+4)2+(y+2)2=20C.(x-2)2+(y-1)2=5D.(x-4)2+(y-2)2=20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆或双曲线的两个焦点为F1(-$\sqrt{5}$,0),F2($\sqrt{5}$,0),P是此曲线上的一点,且PF1⊥PF2,PF1•PF2=2,求该曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow a$=(1,1),$\overrightarrow b$=(1,-1),若$\overrightarrow c$=$-\frac{3}{2}\overrightarrow a$+$\frac{1}{2}\overrightarrow b$,则$\overrightarrow c$=(  )
A.(-1,-2)B.(1,2)C.(-1,2)D.(1,-2)

查看答案和解析>>

同步练习册答案