设f(x)=|x-a|+1,a∈R,则
A.存在a,使f(x)是偶函数,也存在a,使f(x)是奇函数
B.存在a,使f(x)是偶函数,但不存在a,使f(x)是奇函数
C.不存在a,使f(x)是偶函数,但存在a,使f(x)是奇函数
D.不存在a,使f(x)是偶函数,也不存在a,使f(x)是奇函数
科目:高中数学 来源:全优设计选修数学-2-2苏教版 苏教版 题型:013
设f(x)=x(ax2+bx+c)(a≠0)在x=1和x=-1处均有极值,则下列点一定在x轴上的是
A.(a,b)
B.(a,c)
C.(b,c)
D.(a+b,c)
查看答案和解析>>
科目:高中数学 来源:天津一中2008-2009年高三年级三月考数学试卷(理) 题型:044
已知f(x)=(x∈R),在区间[-1,1]上是增函数.
(1)求实数a的值组成的集合A;
(2)设关于x的方程f(x)=的两个非零实根为x1、x2,试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:浙江省杭州市2010届高三科目教学质量检测数学理科试题 题型:044
设f(x)=λ1(x2+x)+λ2x·3x(a,b∈R,a>0)
(1)当λ1=1,λ2=0时,设x1,x2是f(x)的两个极值点,
①如果x1<1<x2<2,求证:(-1)>3;
②如果a≥2,且x2-x1=2且x∈(x1,x2)时,函数g(x)=(x)+2(x-x2)的最小值为h(a),求h(a)的最大值.
(2)当λ1=0,λ2=1时,
①求函数y=f(x)-3(ln3+1)x的最小值.
②对于任意的实数a,b,c,当a+b+c=3时,求证3aa+3bb+3cc≥9
查看答案和解析>>
科目:高中数学 来源:上海市奉贤区2011届高三12月调研测试数学文科试题 题型:044
设h(x)=x+,x∈[,5],其中m是不等于零的常数,
(1)m=1时,直接写出h(x)的值域
(2)求h(x)的单调递增区间;
(3)已知函数f(x)(x∈[a,b]),定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],则f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π],当m=1时,|h1(x)-h2(x)|≤n恒成立,求n的取值范围;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com