精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x+1-a
a-x
(a∈R且x≠a).
(Ⅰ)求证:f(x)+f(2a-x)=-2对定义域内的所有x都成立;
(Ⅱ)当f(x)的定义域为[a+
1
2
,a+1]时,求证:f(x)的值域为[-3,-2];
(Ⅲ)设函数g(x)=x2+|(x-a)•f(x)|,当a=-1时,求g(x)的最小值.
分析:(Ⅰ)f(x)+f(2a-x)=-2可转化为:
x+1-a
a-x
+2+
a-x+1
x-a
=
x+1-a+2a-2x-a+x-1
a-x
=0
,与x取值无关得证;
(Ⅱ)由定义域为[a+
1
2
,a+1],得-1≤a-x≤-
1
2
,-2≤
1
a-x
≤-1
,再由f(x)=1+
1
a-x
求解.
(Ⅲ)解:由a=-1,得g(x)=x2+|x|(x≠-1)当x≥0时,g(x)=(x+
1
2
)2-
1
4
求得最小值;当x≤0时,g(x)=(x-
1
2
)2-
1
4
求得最小值,最后从中取最小的,作为函数的最小值.
解答:证明:(Ⅰ)f(x)+f(2a-x)=-2可转化为:
x+1-a
a-x
+2+
a-x+1
x-a
=
x+1-a+2a-2x-a+x-1
a-x
=0

与x取值无关
∴f(x)+f(2a-x)=-2对定义域内的所有x都成立;
(Ⅱ)证明:
a+
1
2
≤x≤a+1时, -a-1≤-x≤-a-
1
2
-1≤a-x≤-
1
2
,-2≤
1
a-x
≤-1

f(x)值域为[-3,-2]-3≤-1+
1
a-x
≤-2

(Ⅲ)解:当a=-1时,g(x)=x2+|x|(x≠-1)
(ⅰ)当x≥0时,g(x)=(x+
1
2
)2-
1
4

则函数g(x)在[0,+∞)上单调递增,
g(x)min=g(0)=0
(ⅱ)当x≤0时,g(x)=(x-
1
2
)2-
1
4

则函数g(x)在(-∞,0]且x≠-1时单调递减,
g(x)min=g(0)=0
综合得:当x≠-1时,g(x)的最小值是0.
点评:本题主要考查恒成立问题、分类常数法转化函数及分段函数求最值问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案