精英家教网 > 高中数学 > 题目详情
18.公差不为零的等差数列{an}的前n项和为Sn.若a4是a2与a9的等比中项,S3=12,则S10等于(  )
A.96B.108C.145D.160

分析 设出等差数列的等差d,且d不为0,根据a4是a3与a7的等比中项,S8=32,利用等比数列的性质和等差数列的前n项和的公式化简得到关于等差数列首项和公差方程组,求出方程组的解集即可得到首项和公差,然后再利用等差数列的前n项和的公式求出S10即可

解答 解:设公差为d(d≠0),则有$\left\{\begin{array}{l}{{(a}_{1}+d){(a}_{1}+8d){={(a}_{1}+3d)}^{2}}\\{{3a}_{1}+\frac{3•2}{2}•d=12}\end{array}\right.$,
化简得:$\left\{\begin{array}{l}{d({3a}_{1}-d)=0①}\\{{a}_{1}+d=4②}\end{array}\right.$,
因为d≠0,由①得到3a1-d=0③,②+③得:4a1=4,解得a1=1,
把a1=1代入③求得d=3,
所以方程组的解集为$\left\{\begin{array}{l}{{a}_{1}=1}\\{d=3}\end{array}\right.$,
则S10=10×1+$\frac{10×9}{2}$×3=145.
故选:C.

点评 此题考查学生灵活运用等差数列的前n项和的公式及等比数列的通项公式化简求值,是一道综合题.本题解法属基本量法.在解由等差(比)数列中的部分项生成等比(差)数列中部分项问题时,要特别注意新数列中项在新、老数列中的各自属性及其表示.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的首项a1=1,a2=3,前n项和为Sn,且Sn+1,Sn,Sn-1(n>1)分布是直线l上的点A,B,C的横坐标,$\overrightarrow{AB}=\frac{{2{a_n}+1}}{a_n}\overrightarrow{BC}$,设b1=1,bn+1=log2(an+1)+bn
(1)判断数列{an+1}是否为等比数列,并证明你的结论;
(2)设${C_n}=\frac{{{4^{\frac{{{b_{n+1}}-1}}{n+1}}}}}{{{a_n}{a_{n+1}}}}$,证明:C1+C2+C3+…+Cn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.${({\root{3}{{\root{6}{a^9}}}})^4}{({\root{6}{{\root{3}{a^9}}}})^4}$=a4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.等差数列{an}中,a2=5,a5=11.
(1)求数列{an}的通项公式;
(2)令bn=2${\;}^{{a}_{n}}$,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,bcosC+ccosB=asinA,则三角形ABC的形状是直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.从甲地到乙地,每天有直达汽车4班,从甲地到丙地,每天有5个班车,从丙地到乙地,每天有3个班车,则从甲地到乙地不同的乘车方法有(  )
A.12种B.19种C.32种D.60种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知定义在区间[-1,1]上的函数f(x)=$\frac{ax}{1+{x}^{2}}$,且f(1)=-1.
(1)求实数a的值;
(2)证明:函数f(x)在区间(-1,1)上单调递减;
(3)解关于t的不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.$sin(-\frac{43π}{6})$的值为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设a≤2,求y=(x-2)|x|在[a,2]上的最大值和最小值.

查看答案和解析>>

同步练习册答案