精英家教网 > 高中数学 > 题目详情

【题目】已知直线是曲线的切线.

1)求函数的解析式,

2)若,证明:对于任意有且仅有一个零点.

【答案】12)证明见解析

【解析】

1)对函数求导,并设切点,利用点既在曲线上、又在切线上,列出方程组,解得,即可得答案;

2)当x充分小时,当x充分大时,可得至少有一个零点. 再证明零点的唯一性,即对函数求导得,对两种情况讨论,即可得答案.

1)根据题意,,设直线与曲线相切于点.

根据题意,可得,解之得

所以.

2)由(1)可知

则当x充分小时,当x充分大时,∴至少有一个零点.

①若,则上单调递增,∴有唯一零点.

②若,得有两个极值点,

,∴,∴.

上单调递增,在上单调递减,在上单调递增.

∴极大值为.,又

(016)上单调递增,

有唯一零点.

综上可知,对于任意有且仅有一个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《周髀算经》 是我国古代的天文学和数学著作。其中一个问题的大意为:一年有二十四个节气(如图),每个节气晷长损益相同(即物体在太阳的照射下影子长度的增加量和减少量相同).若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(注:ー丈等于十尺,一尺等于十寸),则立冬节气的晷长为( )

A. 九尺五寸 B. 一丈五寸 C. 一丈一尺五寸 D. 一丈六尺五寸

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市对所有高校学生进行普通话水平测试,发现成绩服从正态分布N(μ,σ2),下表用茎叶图列举出来抽样出的10名学生的成绩.

(1)计算这10名学生的成绩的均值和方差;

(2)给出正态分布的数据:P(μ﹣σ<X<μ+σ)=0.6826,P(μ﹣2σ<X<μ+2σ)=0.9544.

由(1)估计从全市随机抽取一名学生的成绩在(76,97)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求实数的值;

(2)令上的最小值为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某两名高三学生连续9次数学测试的成绩(单位:分)进行统计得到如下折线图.下列有关这两名学生数学成绩的分析中,正确的结论是(

A.甲同学的成绩折线图具有较好的对称性,与正态曲线相近,故而平均成绩为130

B.根据甲同学成绩折线图中的数据进行统计,估计该同学平均成绩在区间

C.乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关

D.乙同学在这连续九次测验中的最高分与最低分的差超过40

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】杨辉三角,是二项式系数在三角形中的一种几何排列.中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现了杨辉三角.在欧洲,帕斯卡在1654年也发现了这一规律,所以这个表又叫做帕斯卡三角形.杨辉三角是中国古代数学的杰出研究成果之一,它把二项式系数图形化,把组合数内在的一些代数性质直观地从图形中体现出来,是一种离散型的数与形的结合.

0

1

1

1 1

2

1 2 1

3

1 3 3 1

4

1 4 6 4 1

5

1 5 10 10 5 1

6

1 6 15 20 15 6 1

1)记杨辉三角的前n行所有数之和为,求的通项公式;

2)在杨辉三角中是否存在某一行,且该行中三个相邻的数之比为?若存在,试求出是第几行;若不存在,请说明理由;

3)已知nr为正整数,且.求证:任何四个相邻的组合数不能构成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中为真命题的是(  )

A.命题“若,则”的否命题

B.命题“若xy,则x|y|”的逆命题

C.命题“若x1,则”的否命题

D.命题“已知,若,则ab”的逆命题、否命题、逆否命题均为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

在平面直角坐标系中,椭圆的右焦点为

为常数),离心率等于0.8,过焦点、倾斜角为的直线交椭圆两点.

求椭圆的标准方程;

时,,求实数

试问的值是否与的大小无关,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(Ⅰ)讨论的单调性;

(Ⅱ)当时,证明:

(Ⅲ)求证:对任意正整数,都有 (其中为自然对数的底数).

查看答案和解析>>

同步练习册答案