【题目】某市公租房的房源位于A、B、C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中:
(1)恰有2人申请A片区房源的概率;
(2)申请的房源所在片区的个数的ξ分布列与期望.
【答案】
(1)解:由题意知本题是一个等可能事件的概率
试验发生包含的事件是4个人中,每一个人有3种选择,共有34种结果,
满足条件的事件是恰有2人申请A片区房源,共有C4222
∴根据等可能事件的概率公式得到P= =
(2)解:由题意知ξ的可能取值是1,2,3
P(ξ=1)= ,
P(ξ=2)= ,
P(ξ=3)=
∴ξ的分布列是:
ξ | 1 | 2 | 3 |
P |
∴Eξ=
【解析】(1)本题是一个等可能事件的概率,试验发生包含的事件是4个人中,每一个人有3种选择,共有34种结果,满足条件的事件是恰有2人申请A片区房源,共有C4222 , 得到概率.(2)由题意知变量ξ的可能取值是1,2,3,结合变量对应的事件和第一问的做法写出变量对应的概率,写出分布列,做出变量的期望值.
科目:高中数学 来源: 题型:
【题目】若函数f(x)为定义在R上的奇函数,且在(0,+∞)内是增函数,又f(2)=0,则不等式x5f(x)>0的解集为( )
A.(﹣2,0)∪(2,+∞)
B.(﹣∞,﹣2)∪(0,2)
C.(﹣2,0)∪(0,2)
D.(﹣∞,﹣2)∪(2,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司的两个部门招聘工作人员,应聘者从 T1、T2两组试题中选择一组参加测试,成绩合格者可签约.甲、乙、丙、丁四人参加应聘考试,其中甲、乙两人选择使用试题 T1 , 且表示只要成绩合格就签约;丙、丁两人选择使用试题 T2 , 并约定:两人成绩都合格就一同签约,否则两人都不签约.已知甲、乙考试合格的概率都是 ,丙、丁考试合格的概率都是 ,且考试是否合格互不影响.
(1)求丙、丁未签约的概率;
(2)记签约人数为 X,求 X的分布列和数学期望EX.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态,一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:车辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:
租用单车数量(千辆) | 2 | 3 | 4 | 5 | 8 |
每天一辆车平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .
(1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1)(备注: , 称为相应于点的残差(也叫随机误差));
租用单车数量(千辆) | 2 | 3 | 4 | 5 | 8 | |
每天一辆车平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估计值 | 2.4 | 2.1 | 1.6 | ||
残差 | 0 | 0.1 | ||||
模型乙 | 估计值 | 2.3 | 2 | 1.9 | ||
残差 | 0.1 | 0 | 0 |
②分别计算模型甲与模型乙的残差平方和及,并通过比较, 的大小,判断哪个模型拟合效果更好.
(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放,根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6,问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入—成本).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知y=f(x)是定义在R上的奇函数,当x>0时,f(x)=x2﹣2x.
(1)画出f(x)的简图,并求f(x)的解析式;
(2)利用图象讨论方程f(x)=k的根的情况.(只需写出结果,不要解答过程).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,定点为圆上一动点,线段的垂直平分线交线段于点,设点的轨迹为曲线;
(Ⅰ)求曲线的方程;
(Ⅱ)若经过的直线交曲线于不同的两点,(点在点, 之间),且满足,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,现从高一学生中抽取人做调查,得到如下列联表:
已知在这人中随机抽取一人抽到喜欢游泳的学生的概率为,
(Ⅰ)请将上述列联表补充完整,并判断是否有%的把握认为喜欢游泳与性别有关?并说明你的理由;
(Ⅱ)针对问卷调查的名学生,学校决定从喜欢游泳的人中按分层抽样的方法随机抽取人成立游泳科普知识宣传组,并在这人中任选两人作为宣传组的组长,求这两人中至少有一名女生的概率,参考公式: ,其中.参考数据:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com