精英家教网 > 高中数学 > 题目详情

【题目】随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大。某电信运营商推出一款新的“流量包”套餐.为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户按年龄分组进行访谈,统计结果如下表.

组号

年龄

访谈人数

愿意使用

1

[20,30)

5

5

2

[30.40)

10

10

3

[40.50)

15

12

4

[50.60)

14

8

5

[60,70)

6

2

(1)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取15人,则各组应分别抽取多少人?

(2)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.

(3)按以上统计数据填写下面2×2列联表,并判断以50岁为分界点,能否在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关;

/table>

参考公式:,其中.

年龄不低于50岁的人数

年龄低于50岁的人数

合计

愿意使用的人数

不愿意使用的人数

合计

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1)各组分别为5人,6人,4人;(2);(3)在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关.

【解析】试题分析:(1)三组一共有人,抽取人,故两个人抽一人,由此得到抽取的人数分别为人.(2)利用列举法列举出所有可能性有种,其中符合题意的有种,故概率为.(3)根据题意填写好表格后,计算,故有在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关.

试题解析:

解:(1)因为,所以第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取15人,各组分别为5人,6人,4人.

(2)设第5组中不愿意选择此款“流量包”套餐A,B,C,D,愿意选择此款“流量包”套餐人为a,b,则愿意从6人中选取2人有:共15个结果,其中至少有1人愿意选择此款“流量包”共9个结果,所以求2人中至少有1人愿意选择此款“流量包”套餐的概率.

(3)2×2列联表

年龄不低于50岁的人数

年龄低于50岁的人数

合计

使用的人数

10

27

37

不愿意使用的人数

10

3

13

合计

20

30

50

∴在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】电视连续剧《人民的名义》自2017年3月28日在湖南卫视开播以来,引发各方关注,收视率、点击率均占据各大排行榜首位.我们用简单随机抽样的方法对这部电视剧的观看情况进行抽样调查,共调查了600人,得到结果如下:其中图1是非常喜欢《人民的名义》这部电视剧的观众年龄的频率分布直方图;表1是不同年龄段的观众选择不同观看方式的人数.

观看方式

年龄(岁)

电视

网络

150

250

120

80

求:(I)假设同一组中的每个数据用该组区间的中点值代替,求非常喜欢《人民的名义》这部电视剧的观众的平均年龄;

(II)根据表1,通过计算说明我们是否有99%的把握认为观看该剧的方式与年龄有关?

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,定义域为上的函数是由一条射线及抛物线的一部分组成.利用该图提供的信息解决下面几个问题.

1)求的解析式;

2)若关于的方程有三个不同解,求的取值范围;

3)若,求的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足a22a58

1)求{an}的通项公式;

2)各项均为正数的等比数列{bn}中,b11b2b3a4,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

极坐标系的极点为直角坐标系的原点,极轴为轴的正半轴,两种坐标系中的长度单位相同,已知曲线的极坐标方程为.

(1)求的直角坐标方程;

(2)直线为参数)与曲线交于两点,与轴交于,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A={x|x2-2x=0},B={x|x2-2axa2a=0}.

(1)若ABB,求a的取值范围;

(2)若ABB,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过3500元的部分不纳税,超过3500元的部分为全月纳税所得额,此项税款按下表分段累计计算:

已知张先生的月工资、薪金所得为10000元,问他当月应缴纳多少个人所得税?

设王先生的月工资、薪金所得为元,当月应缴纳个人所得税为元,写出的函数关系式;

(3)已知王先生一月份应缴纳个人所得税为303元,那么他当月的个工资、薪金所得为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知如图,圆、椭圆均经过点M,圆的圆心为,椭圆的两焦点分别为.

(Ⅰ)分别求圆和椭圆的标准方程;

(Ⅱ)过作直线与圆交于两点,试探究是否为定值?若是定值,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在[-1,1]上的奇函数,当x∈[-1,0]时,函数的解析式为f(x)= (a∈R).

(1)试求a的值;

(2)写出f(x)在[0,1]上的解析式;

(3)求f(x)在[0,1]上的最大值.

查看答案和解析>>

同步练习册答案