精英家教网 > 高中数学 > 题目详情

【题目】下面有命题:

①y=|sinx-|的周期是2π;

②y=sinx+sin|x|的值域是[0,2] ;

③方程cosx=lgx有三解;

为正实数,上递增,那么的取值范围是

⑤在y=3sin(2x+)中,若f(x)=f(x2)=0,则x1-x2必为的整数倍;

⑥若A、B是锐角△ABC的两个内角,则点P(cosB-sinA,sinB-cosA)在第二象限;

⑦在中,若,则钝角三角形。

其中真命题个数为(  )

A. 2 B. 3 C. 4 D. 5

【答案】D

【解析】①y=|sinx-|的周期是2π(如图);②y=sinx+sin|x|的值域是[-2,2] ;③方程cosx=lgx有三解(如图);④

类似可得所以点P(cosB-sinA,sinB-cosA)在第二象限; ⑦由 ,即钝角三角形,因此①③④⑥⑦正确,选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某城市在发展过程中,交通状况逐渐受到有关部门的关注,据有关统计数据显示,从上午6点到中午12点,车辆通过该市某一路段的用时y(分钟)与车辆进入该路段的时刻t之间的关系可近似地用如下函数给出: y=
求从上午6点到中午12点,通过该路段用时最多的时刻.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体P﹣ABCD中,△ABD是边长为2的正三角形,PC⊥底面ABCD,AB⊥BP,BC=
(1)求证:PA⊥BD;
(2)已知E是PA上一点,且BE∥平面PCD.若PC=2,求点E到平面ABCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与直线,其中为常数.

1,求的值;

2若点上,直线点,且在两坐标轴上的截距之和为0,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱 分别为 的中点.

1)求证: 平面

2)求异面直线 所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆C的两个焦点是F1、F2 , 过F1的直线与椭圆C交于P、Q,若|PF2|=|F1F2|,且5|PF1|=6|F1Q|,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于空间两不同的直线,两不同的平面,有下列推理:

(1), (2),(3)

(4), (5)

其中推理正确的序号为( )

A. (1)(3)(4) B. (2)(3)(5) C. (4)(5) D. (2)(3)(4)(5)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面 为等边三角形, 分别为的中点.

(1)求证: 平面.

(2)求证:平面平面.

(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数在定义域内存在区间,使得该函数在区间上的值域为,则称函数是该定义域上的“和谐函数”.

(1)求证:函数是“和谐函数”;

(2)若函数是“和谐函数”,求实数的取值范围.

查看答案和解析>>

同步练习册答案