科目:高中数学 来源:2017届江苏泰州中学高三文上月考一数学试卷(解析版) 题型:解答题
已知函数(为实数).
(1)当时,求函数的图象在点处的切线方程;
(2)设函数(其中为常数),若函数在区间上不存在极值,且存在满
足,求的取值范围;
(3)已知,求证:.
查看答案和解析>>
科目:高中数学 来源:2016-2017年河北武邑中学高二文周考11.20数学试卷(解析版) 题型:解答题
某工厂有工人1000名,其中250名工人参加短期培训(称为类工人),另外750名工人参加过长期培训(称为类工人).现用分层抽样方法(按类,类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).
(1)类工人和类工人中个抽查多少工人?
(2)从类工人中的抽查结果和从类工人中的抽查结果分别如下表1和表2.
表1:
表2:
① 先确定,,再完成下列频率分布直方图,就生产能力而言,类工人中个体间的差异程度与类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)
② 分别估计类工人和类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组中
的数据用该组区间的中点值作代表).
查看答案和解析>>
科目:高中数学 来源:2016-2017年黑龙江宝清高级中学高二文上月考二数学试卷(解析版) 题型:解答题
已知直线与椭圆相交于两点.
(1)若椭圆的离心率为,焦距为,求线段的长;
(2)若向量与向量互相垂直(其中为坐标原点),当椭圆的离心率时,求椭圆长轴长的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com