(本题满分13分)设函数满足:都有,且时,取极小值
(1)的解析式;
(2)当时,证明:函数图象上任意两点处的切线不可能互相垂直;
(3)设, 当时,求函数的最小值,并指出当取最小值时相应的值.
(1)
(2) 根据题意可知,由于,设:任意两数 是函数图像上两点的横坐标,则这两点处的切线的斜率分别是:,那么可以判定斜率之积不是-1,说明不能垂直
(3) 故当 时, 有最小值
【解析】
试题分析:解:()因为,成立,所以:,
由: ,得 ,
由:,得
解之得: 从而,函数解析式为: (4分)
(2)由于,,设:任意两数 是函数图像上两点的横坐标,则这两点处的切线的斜率分别是:
又因为:,所以,,得:知:
故,当 是函数图像上任意两点处的切线不可能垂直 (8分)
(3)当 时, 且 此时
(11分)
当且仅当:即即,取等号,
所以
故当 时, 有最小值 (13分)
(或)
考点:导数的几何意义以及函数的最值
点评:解决的关键是利用导数的符号确定出函数单调性,以及函数的极值,从而比较极值和端点值的函数值得到最值,属于基础题。
科目:高中数学 来源:2012-2013学年山东省高三上学期期末模块考试文科数学试卷(解析版) 题型:解答题
(本题满分13分)
设函数.
(Ⅰ)求的最小值;
(Ⅱ)若对恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011年福建省高二上学期期末考试数学理卷 题型:解答题
(本题满分13分)设命题:函数=-2-1在区间(-∞,3]上单调递减;命题:函数的定义域是.如果命题为真命题,为假命题,求的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省三明市高三上学期三校联考数学理卷 题型:解答题
(本题满分13分) 设锐角△ABC的三内角A,B,C的对边分别为 a,b,c,向量
, ,已知与共线 。 (Ⅰ)求角A的大小;
(Ⅱ)若,,且△ABC的面积小于,求角B的取值范围。
查看答案和解析>>
科目:高中数学 来源:2010年北京市朝阳区高三第二次模拟考试数学(理) 题型:解答题
(本题满分13分)
设函数.
(Ⅰ)求函数的最小正周期;
(Ⅱ)当时,求函数的最大值及取得最大值时的的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com