精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的方程为 =1,其左右焦点分别为F1 , F2 , 过其左焦点且斜率为1的直线与该椭圆相交与A,B两点,则 =

【答案】4
【解析】解:由椭圆的方程为 =1,焦点在x轴上,a=2,b=1,c= =
则左焦点F1(﹣ ,0),设直线AB的方程为:y=x+
,整理得: x2+2 x+2=0,
设A(x1 , y1),B(x2 , y2),
由韦达定理可知:x1+x2=﹣ =﹣ ,x1x2=
y1y2=(x1+ )(x2+ )=x1x2+ (x1+x2)+3=﹣
由弦长公式可知:丨AB丨= = =
丨F1A丨丨F1B丨= =2丨y1y2
= = = =4,
所以答案是:4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设等比数列{an}的前项n和Sn , a2= ,且S1+ ,S2 , S3成等差数列,数列{bn}满足bn=2n.
(1)求数列{an}的通项公式;
(2)设cn=anbn , 若对任意n∈N+ , 不等式c1+c2+…+cn λ+2Sn﹣1恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2﹣2ax+a+2=0,当a为何值时,该方程:
(1)有两个不同的正根;
(2)有不同的两根且两根在(1,3)内.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=4x的焦点为F,过点F的直线交抛物线于A,B两点.
(1)若 =3 ,求直线AB的斜率;
(2)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x)=ax2+2x﹣2a,若方程f(x)=0有相异的两根x1 , x2
(1)若a>0,且x1<1<x2 , 求a的取值范围;
(2)若x1﹣1,x2﹣1同号,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】山西某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(本科学历)的调查,其结果(人数分布)如表:

学历

35岁以下

3550岁

50岁以上

本科

80

30

20

研究生

20

(Ⅰ)用分层抽样的方法在岁年龄段的专业技术人员中抽取一个容量为10的样本,将该样本看成一个总体,从中任取3人,求至少有1人的学历为研究生的概率;

(Ⅱ)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取个人,其中35岁以下48人,50岁以上10人,再从这个人中随机抽取出1人,此人的年龄为50岁以上的概率为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设x取实数,则f(x)与g(x)表示同一个函数的是(
A.f(x)=x,g(x)=
B.f(x)= ,g(x)=
C.f(x)=1,g(x)=(x﹣1)0
D.f(x)= ,g(x)=x﹣3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= ,(a>0,且a≠1).
(1)求f(x)的定义域.
(2)证明f(x)为奇函数.
(3)求使f(x)>0成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为(
A.
B.
C.
D.以上都不对

查看答案和解析>>

同步练习册答案