【题目】已知函数y=a-bcos(b>0)的最大值为,最小值为-.
(1)求a,b的值;
(2)求函数g(x)=-4asin的最小值并求出对应x的集合.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,椭圆的极坐标方程为,其左焦点在直线上.
(1)若直线与椭圆交于两点,求的值;
(2)求椭圆的内接矩形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数在区间上的图像如图所示,将该函数图像上各点的横坐标缩短到原来的一半(纵坐标不变),再向右平移个单位长度后,所得到的图像关于直线对称,则的最小值为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,超过的部分,每超出(不足时按计算)需再收5元.公司从承揽过的包裹中,随机抽取100件,其重量统计如下:
包裹重量(单位:) | |||||
包裹件数 | 43 | 30 | 15 | 8 | 4 |
公司又随机抽取了60天的揽件数,得到频数分布表如下:
揽件数 | |||||
天数 | 6 | 6 | 30 | 12 | 6 |
以记录的60天的揽件数的频率作为各揽件数发生的概率
(1)计算该公司3天中恰有2天揽件数在的概率;
(2)估计该公司对每件包裹收取的快递费的平均值;
(3)公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用做其他费用,目前前台有工作人员3人,每人每天揽件不超过150件,每人每天工资100元,公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润有利?
(注:同一组中的揽件数以这组数据所在区间中点值作代表)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,。
Ⅰ.求函数的最小正周期和单调递增区间;
Ⅱ.当时,方程恰有两个不同的实数根,求实数的取值范围;
Ⅲ.将函数的图象向右平移个单位后所得函数的图象关于原点中心对称,求的最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)求在点P(1,)处的切线方程;
(2)若关于x的不等式有且仅有三个整数解,求实数t的取值范围;
(3)若存在两个正实数,满足,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知,两个城镇相距20公里,设是中点,在的中垂线上有一高铁站,的距离为10公里.为方便居民出行,在线段上任取一点(点与,不重合)建设交通枢纽,从高铁站铺设快速路到处,再铺设快速路分别到,两处.因地质条件等各种因素,其中快速路造价为3百万元/公里,快速路造价为2百万元/公里,快速路造价为4百万元/公里, 设,总造价为(单位:百万元).
(1)求关于的函数关系式,并指出函数的定义域;
(2)求总造价的最小值,并求出此时的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com