精英家教网 > 高中数学 > 题目详情
精英家教网如图,正三棱柱ABC-A1B1C1的所有棱长均为2,P是侧棱AA1上任意一点.
(1)求证:B1P不可能与平面ACC1A1垂直;
(2)当BC1⊥B1P时,求二面角C-B1P-C1的大小.
分析:(1)连接B1P,假设B1P⊥平面ACC1A1,根据线面垂直的性质定理可知∠B1A1C1=90°,这与△A1B1C1是等边三角形矛盾,所以B1P不可能与平面ACC1A1垂直;
(2)取A1B1的中点D,连接C1D、BD、BC1,先求出AP长,连接B1C,交BC1于点O,过O在平面CPB1上作OE⊥B1P,交B1P于点E,连接C1E,根据二面角的定义证得∠OEC1是二面角C-B1P-C1的平面角,在三角形OEC1中求出此角即可.
解答:解:精英家教网(1)证明:连接B1P,假设B1P⊥平面ACC1A1,则B1P⊥A1C1
由于三棱柱ABC-A1B1C1为正三棱柱,
∴AA1⊥A1C1
∴A1C1⊥侧面ABB1A1
∴A1C1⊥A1B1
即∠B1A1C1=90°.
这与△A1B1C1是等边三角形矛盾.
∴B1P不可能与平面ACC1A1垂直.
(2)取A1B1的中点D,连接C1D、BD、BC1
则C1D⊥A1B1,又∵AA1⊥平面A1B1C1
∴AA1⊥C1D.∴C1D⊥平面ABB1A1
∴BD是BC1在平面ABB1A1上的射影.
∵BC1⊥B1P,∴BD⊥B1P.∴∠B1BD=90°-∠BB1P=∠A1B1P.
又A1B1=B1B=2,∴△BB1D≌△B1A1P,A1P=B1D=1.∴AP=1.
连接B1C,交BC1于点O,则BC1⊥B1C.
又BC1⊥B1P,∴BC1⊥平面B1CP.
过O在平面CPB1上作OE⊥B1P,交B1P于点E,
连接C1E,则B1P⊥C1E,
∴∠OEC1是二面角C-B1P-C1的平面角.
由于CP=B1P=
5
,O为B1C的中点,连接OP,
∴PO⊥B1C,OP•OB1=OE•B1P.∴OE=
30
5

∴tan∠OEC1=
OC1
OE
=
15
3

∴∠OEC1=arctan
15
3

故二面角C-B1P-C1的大小为arctan
15
3
点评:本题主要考查了直线与平面的位置关系,以及二面角等有关知识,考查空间想象能力、运算能力和推理论证能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,正三棱柱ABC-A1B1C1各棱长都等于a,E是BB1的中点.
(1)求直线C1B与平面A1ABB1所成角的正弦值;
(2)求证:平面AEC1⊥平面ACC1A1
(3)求点C1到平面AEC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正三棱柱ABC-A1B1C1的各棱长都2,E,F分别是AB,A1C1的中点,则EF的长是(  )
A、2
B、
3
C、
5
D、
7

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(Ⅰ)求证:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州二模)如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(Ⅰ)求证:AB1⊥面A1BD;
(Ⅱ)设点O为AB1上的动点,当OD∥平面ABC时,求
AOOB1
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正三棱柱ABC-A1B1C1中(注:底面为正三角形且侧棱与底面垂直),BC=CC1=2,P,Q分别为BB1,CC1的中点.
(Ⅰ)求多面体ABC-A1PC1的体积;
(Ⅱ)求A1Q与BC1所成角的大小.

查看答案和解析>>

同步练习册答案