精英家教网 > 高中数学 > 题目详情
10.已知$\overrightarrow m=(\sqrt{3},2sinx),\overrightarrow n=({sin^2}x-{cos^2}x,cosx)$,函数$f(x)=\overrightarrow m•\overrightarrow n$.
(1)求f(x)的最小正周期、对称轴和对称中心;
(2)设$x∈[-\frac{π}{3},\;\frac{π}{3}]$,求f(x)的单调递增区间.

分析 (1)利用向量的数量积公式、辅助角公式化简函数,即可求f(x)的最小正周期、对称轴和对称中心;
(2)设$x∈[-\frac{π}{3},\;\frac{π}{3}]$,由$-\frac{π}{2}≤2x-\frac{π}{3}≤\frac{π}{3}$得$-\frac{π}{12}≤x≤\frac{π}{3}$,即可求f(x)的单调递增区间.

解答 解:(1)$f(x)=-\sqrt{3}({cos^2}x-{sin^2}x)+2sinx•cosx$=$-\sqrt{3}cos2x+sin2x=2sin(2x-\frac{π}{3})$----------(2分)
∴f(x)的最小正周期为$\frac{2π}{2}$=π----------(3分)
由$2x-\frac{π}{3}=kπ+\frac{π}{2}(k∈Z)$得,$x=\frac{1}{2}kπ+\frac{5}{12}π(k∈Z)$,
∴f(x)的对称轴为$x=\frac{1}{2}kπ+\frac{5}{12}π(k∈Z)$----------(5分)
由$2x-\frac{π}{3}=kπ(k∈Z)$,得$x=\frac{1}{2}kπ+\frac{π}{6}(k∈Z)$,
∴f(x)的对称中心为$({\frac{1}{2}kπ+\frac{π}{6},0})(k∈Z)$----------(7分)
(2)∵$-\frac{π}{3}≤x≤\frac{π}{3}$,∴$-π≤2x-\frac{π}{3}≤\frac{π}{3}$,
由$-\frac{π}{2}≤2x-\frac{π}{3}≤\frac{π}{3}$得$-\frac{π}{12}≤x≤\frac{π}{3}$,
∴f(x)的单调递增区间为$[{-\frac{π}{12},\frac{π}{3}}]$-----------(12分)

点评 本题考查三角函数的图象与性质,考查学生化简能力,考查学生的计算能力,正确化简是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知集合A={x∈R|x2-4x<0},B={x∈R|2x<8},则A∩B=(  )
A.(0,3)B.(3,4)C.(0,4)D.(-∞,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若0$<α<\frac{π}{2}$,-$\frac{π}{2}$<β<0,cos($α+\frac{π}{4}$)=$\frac{1}{3}$,sin($\frac{β}{2}$+$\frac{π}{4}$)=$\frac{\sqrt{3}}{3}$,则cos(2α+β)=$\frac{23}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知圆x2+(y-2)2=1被双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线截得的弦长为$\sqrt{3}$,则该双曲线离心率的值为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设$a={2016^{\frac{1}{2017}}},b={log_{2016}}^{\sqrt{2017}},c={log_{2017}}^{\sqrt{2016}}$,则a,b,c的大小关系为(  )
A.a>b>cB.a>c>bC.b>a>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=2x-1在(1,2)内的平均变化率为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)的定义域为(-2,2),函数g(x)=f(x-1)+f(3-2x).
(1)求函数g(x)的定义域;
(2)若f(x)=log2${\;}^{{x}^{2}+mx+3}$的定义域为R,求m的取值范围
(3)若f(x)=log2${\;}^{{x}^{2}+mx+3}$的值域为R,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设A={4,5,6,7},B={x∈N|3≤x<6},则A∩B=(  )
A.{4,5,6}B.{4,5}C.{3,4,5}D.{5,6,7}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=x2-2x+2在(-∞,1)上的反函数f-1(x)=1-$\sqrt{x-1}$.x>1.

查看答案和解析>>

同步练习册答案