精英家教网 > 高中数学 > 题目详情
已知f1(x)=sinx+cosx,记f2(x)=f1′(x),f3(x)=f2′(x),…,fn(x)=fn-1′(x),(n∈N*,n≥2),则f1(
π
2
)+f2(
π
2
)+…+f2012(
π
2
)
=
0
0
分析:利用三角函数求导法则求出f2(x)、f3(x)、f4(x),…观察所求的结果,归纳其中的规律,发现标号的周期性为4,再将
π
4
代入,每四项的和是一个常数,即可求得正确答案.
解答:解:f2(x)=f1′(x)=cosx-sinx,
f3(x)=(cosx-sinx)′=-sinx-cosx,
f4(x)=-cosx+sinx,f5(x)=sinx+cosx,
以此类推,可得出fn(x)=fn+4(x)
又∵f1(x)+f2(x)+f3(x)+f4(x)=0,
f1(
π
2
)+f2(
π
2
)+…+f2012(
π
4
)
=4[f1
π
2
)+f2
π
2
)+f3
π
2
)+f4
π
2
)]=0.
故答案为0.
点评:本题考查三角函数的导数、周期性、及观察归纳思想的运用,属于基础题.熟练掌握三角函数的求导法则,利用其中的函数周期性则解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f1(x)=sinx+cosx,记f2(x)=f′1(x),f3(x)=f′2(x),…,fn(x)=f′n-1(x),( n∈N*,n≥2).则f1
π
4
)+f2
π
4
)+…+f2010
π
4
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f1(x)=sinx+cosx,记f2(x)=f1′(x),f3(x)=f2′(x),…,fn(x)=fn-1′(x)(n∈N*且n≥2),则f1(
π
2
)+f2(
π
2
)+…+f2013(
π
2
)
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f1(x)=sinx+cosx,fn+1(x)是fn(x)的导函数,即f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1(x)=fn′(x),n∈N+,则f2013(x)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f1(x)=sinx-cosx,fn+1(x)是fn(x)的导函数,即f2(x)=f1(x)f3(x)=f2(x),…,fn+1(x)=fn(x),n∈N*,则f2012(x)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f1(x)=sinx,f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N*,则f2012(x)=(  )

查看答案和解析>>

同步练习册答案