精英家教网 > 高中数学 > 题目详情
6.已知△ABC的三边a,b,c满足$\frac{1}{a+b}$+$\frac{1}{b+c}$=$\frac{3}{a+b+c}$,则角B=$\frac{π}{3}$.

分析 化简所给的条件求得b2=a2+c2-ac,利用余弦定理求得cosB=$\frac{{a}^{2}{+c}^{2}{-b}^{2}}{2ac}$ 的值,可得B的值.

解答 解:△ABC的三边a,b,c满足$\frac{1}{a+b}$+$\frac{1}{b+c}$=$\frac{3}{a+b+c}$,
∴$\frac{a+b+c}{a+b}$+$\frac{a+b+c}{b+c}$=3,∴$\frac{c}{a+b}$+$\frac{a}{b+c}$=1,∴c(b+c)+a(a+b)=(a+b)(b+c),
即 b2=a2+c2-ac,∴cosB=$\frac{{a}^{2}{+c}^{2}{-b}^{2}}{2ac}$=$\frac{1}{2}$,
∴B=$\frac{π}{3}$,
故答案为:$\frac{π}{3}$.

点评 本题主要考查余弦定理的应用,根据三角函数的值求角,式子的变形是解题的难点,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{{3}^{x}\\;(x≥0)}\\{lo{g}_{3}(-x)\\;(x<0)}\end{array}\right.$.若函数g(x)=f2(x)+f(x)+t,(t∈R),则下列说法中不正确的是(  )
A.当t<-2时,则函数g(x)有四个零点B.当t=-2时,则函数g(x)有三个零点
C.当t=$\frac{1}{4}$时,则函数g(x)有一个零点D.当-2<t<$\frac{1}{4}$时,则函数g(x)有两个零点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知sinα+cosα=$\frac{1}{5}$,0<α<π,求下列各式的值:
(1)tanα;
(2)sin2α-2sin αcosα+3cos2α.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上存在一点P满足|OP|为边长的正方形的面积等于2ab(其中O为坐标原点),则双曲线的离心率的取值范围是(  )
A.(1,$\frac{\sqrt{5}}{2}$]B.(1,$\frac{\sqrt{7}}{2}$]C.[$\frac{\sqrt{5}}{2}$,+∞)D.[$\frac{\sqrt{7}}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知A={a,b,c},B={1,2,3},从A到B建立映射f,使f(a)+f(b)+f(c)=4,则满足条件的映射共有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=log2$\frac{x}{1-x}$.
(1)求函数的定义域;
(2)若函数f(x)在其定义域内是增函数,解不等式f(t)-f(2t-$\frac{1}{2}$)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若直线y=2a与函数f(x)=|x-a|-1的图象只有一个交点,则实数a的值是$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.命题“?x>1,x2>1”的否定是?x>1,x2≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an,Sn,an2成等差数列.
(1)求数列{an}的通项公式;
(2)设数列{bn}中,bn=a1•a2•a3•…•an,数列{$\frac{1}{{b}_{n}}$}的前n项和为Tn,求证:Tn<2.

查看答案和解析>>

同步练习册答案