精英家教网 > 高中数学 > 题目详情
(2010•温州二模)设y=f(x-1)是R上的奇函数,若y=f(x)在(-1,+∞)上是增函数,且f(0)=1,则满足f(m)>-1的实数m的范围是(  )
分析:利用y=f(x-1)是R上的奇函数,可得y=f(x)关于(-1,0)对称,进而求得y=f(x)在R上是增函数,再把f(m)>-1转化为f(m)>f(-2)可得m的范围
解答:解:∵y=f(x-1)是R上的奇函数,
∴y=f(x-1)关于(0,0)对称,且f(-x-1)=-f(x-1),
故y=f(x)关于(-1,0)对称,
又因为y=f(x)在(-1,+∞)上是增函数,
所以y=f(x)在R上是增函数,
有f(-x-1)=-f(x-1),得f(-2)=-f(0)=-1,
∴f(m)>-1转化为f(m)>f(-2),
即m>-2,
故选
点评:本题主考查抽象函数的单调性、对称性以及奇偶性,抽象函数是相对于给出具体解析式的函数来说的,它虽然没有具体的表达式,但是有一定的对应法则,满足一定的性质,这种对应法则及函数的相应的性质是解决问题的关键.抽象函数的抽象性赋予它丰富的内涵和多变的思维价值,可以考查类比猜测,合情推理的探究能力和创新精神
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•温州二模)设向量
a
=(1,
3
)
b
=(cosθ,sinθ)
,若
a
b
,则tanθ=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•温州二模)已知f′(x)是函数f(x)=
13
x3-mx2+(m2-1)x+n
的导函数,若函数y=f[f′(x)]在区间[m,m+1]上单调递减,则实数m的范围是
-1≤m≤0
-1≤m≤0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•温州二模)设AD是半径为5的半圆O的直径(如图),B,C是半圆上两点,已知AB=BC=
10

(1)求cos∠AOC的值.
(2)求
DC
DB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•温州二模)已知数列{an}的前n项和为SnSn=
1,n=1
n2-3n+4,n≥
2

(1)求数列{an}的通项公式;
(2)是否存在正整数m,使得am,am+1,am+2成等比数列,若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•温州二模)设复数z的共轭复数为
.
z
,若(2+i)z=3-i,则z•
.
z
的值为(  )

查看答案和解析>>

同步练习册答案