精英家教网 > 高中数学 > 题目详情

【题目】已知fx)是定义在R上的函数,f′(x)是fx)的导函数,且满足f′(x)+fx)<0,设gx)=exfx),若不等式g(1+t2)<gmt)对于任意的实数t恒成立,则实数m的取值范围是( )

A. (﹣∞,0)∪(4,+∞) B. (0,1)

C. (﹣∞,﹣2)∪(2,+∞) D. (﹣2,2)

【答案】D

【解析】

f′(x)+fx)<0确定函数gx)=exfx)为单调递减函数,转化不等式g(1+t2)<gmt)为:对于任意的实数t恒成立,变形成:对于任意的实数t恒成立,利用即可求得实数m的取值范围。

gx)=exfx)得:

f′(x)+fx)<0,所以

gx)=exfx)在R上单调递减,

所以不等式g(1+t2)<gmt)对于任意的实数t恒成立可转化成:

对于任意的实数t恒成立,

即:对于任意的实数t恒成立,

所以,解得:

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于函数有如下命题:

②函数的图象关于原点中心对称;

③函数的定义域与值域相同; ④函数的图象必经过第二、四象限.

其中正确命题的个数是(

A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2ex+3x2-2x+1+bx∈R的图象在x=0处的切线方程为yax+2.

(1)求函数f(x)的单调区间与极值;

(2)若存在实数x,使得f(x)-2x2-3x-2-2k≤0成立,求整数k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M过C(1,-1),D(-1,1)两点,且圆心M在x+y-2=0上.

(1)求圆M的方程;

(2)设点P是直线3x+4y+8=0上的动点,PA,PB是圆M的两条切线,A,B为切点,求四边形PAMB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某小区中央广场由两部分组成,一部分是边长为的正方形,另一部分是以为直径的半圆,其圆心为.规划修建的条直道 将广场分割为个区域:Ⅰ、Ⅲ、Ⅴ为绿化区域(图中阴影部分),Ⅱ、Ⅳ、Ⅵ为休闲区域,其中点在半圆弧上, 分别与 相交于点 .(道路宽度忽略不计)

(1)若经过圆心,求点的距离;

(2)设 .

①试用表示的长度;

②当为何值时,绿化区域面积之和最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 两两垂直, ,且 .

(1)求二面角的余弦值;

(2)已知点为线段上异于的点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】长方形中, 中点(图1).将沿折起,使得(图2).在图2中:

(1)求证:平面 平面

2 求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一研究性学习小组对春季昼夜温差大小与某大豆种子发芽多少之间的关系进行分析研究,他们分别记录了41日至45日的每天昼夜温差与实验室每天每100颗种子的发芽数,得到如下数据:

日期

41

42

43

44

45

温差摄氏度

8

12

13

11

10

发芽数

18

26

30

25

20

该学习组所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再用被选取的2组数据进行检验.

1)求选取的2组数据恰好是相邻2天的数据的概率;

2)若选取的是41日与45日这2组数据做检验,请根据42日至44日这3组数据求出关于的线性回归方程

3)若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)所得的线性回归方程是否可靠?

参考公式和数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)求曲线在点处的切线方程;

(2)若恒成立,求实数的取值范围;

(3)求整数的值,使函数在区间上有零点.

查看答案和解析>>

同步练习册答案