精英家教网 > 高中数学 > 题目详情
8.设等比数列{an}的前n项和为Sn,已知a1=2016,且an+2an+1+an+2=0(n∈N*),则S2016=(  )
A.0B.2015C.2016D.2017

分析 设等比数列{an}的公比为q,由于an+2an+1+an+2=0(n∈N*),可得an(1+2q+q2)=0,解得q=-1.即可得出.

解答 解:设等比数列{an}的公比为q,
∵an+2an+1+an+2=0(n∈N*),
∴an(1+2q+q2)=0,
解得q=-1.
∴an+an+1=0.
∴S2016=(a1+a2)+(a3+a4)+…+(a2015+a2016)=0.
故选:A.

点评 本题考查了等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数h(x)=x-(a+1)lnx-$\frac{a}{x}$,求函数h(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在正四棱柱ABCD-A1B1C1D1中,AB=2$\sqrt{2}$,AA1=4,E,F分别为棱AB,CD的中点,则三棱锥B1-EFD1的体积为(  )
A.$\frac{\sqrt{6}}{6}$B.$\frac{16\sqrt{3}}{3}$C.$\frac{16}{3}$D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线l的倾斜角为135°,直线l1经过点A(3,2)和B(a,-1),且直线l1与直线l垂直,直线l2的方程为2x+by+1=0,且直线l2与直线l1平行,则a+b等于(  )
A.-4B.-2C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$sin(α-\frac{π}{8})=\frac{3}{5},\frac{5π}{8}<α<\frac{9π}{8}$,
(1)求 $cos({α-\frac{π}{8}})$的值; 
 (2)求sin2α-cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.有下列命题:
①当λ∈R,且$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{2}}$+…+$\overrightarrow{{a}_{n}}$=$\overrightarrow{0}$时,λ$\overrightarrow{{a}_{1}}$+λ$\overrightarrow{{a}_{2}}$+…+λ$\overrightarrow{{a}_{n}}$=$\overrightarrow{0}$;
②当λ1,λ2,…,λn∈R,且λ12+…+λn=0时,λ1$\overrightarrow{a}$+λ2$\overrightarrow{a}$+…+λn$\overrightarrow{a}$=$\overrightarrow{0}$;
③当λ1,λ2,…λn∈R,且λ12+…+λn=0时,$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,…,$\overrightarrow{{a}_{n}}$是n个向量,且$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{2}}$+…+$\overrightarrow{{a}_{n}}$=$\overrightarrow{0}$,则λ$\overrightarrow{{a}_{1}}$+λ$\overrightarrow{{a}_{2}}$+…+λ$\overrightarrow{{a}_{n}}$=$\overrightarrow{0}$.
其中真命题有①②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,四边形ABCD是矩形,DA⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE,AC和BD交于点G.
(1)证明:AE∥平面BFD;
(2)求点F到平面BCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}满足$\frac{1}{lg(1-\sqrt{{a}_{1}})}$+$\frac{2}{lg(1-\sqrt{{a}_{2}})}$+…+$\frac{n}{lg(1-\sqrt{{a}_{n}})}$=-$\frac{n}{lg2}$(n≥1).
(1)求数列{an}的通项公式;
(2)对于任意实数x和正整数n,
(Ⅰ)证明:$\frac{{a}_{n}}{n}$≥x($\frac{1}{{2}^{0}}$-x)+x($\frac{1}{2}$-x)+x($\frac{1}{{2}^{2}}$-x)+…+x($\frac{1}{{2}^{n-1}}$-x);
(Ⅱ)证明:$\frac{{a}_{1}}{1}$+$\frac{{a}_{2}}{2}$+…+$\frac{{a}_{n}}{n}$>$\frac{2(n-1)^{2}}{n(n+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设p:“若x=a,则x2=4”,q:“若x>a,则2x>1”.
(1)若p为真,求实数a的取值范围;
(2)若p且q为真,求实数a的值.

查看答案和解析>>

同步练习册答案