精英家教网 > 高中数学 > 题目详情

【题目】已知:三棱柱中,底面是正三角形,侧棱 是棱的中点,点在棱上,且

)求证: 平面

)求证:

【答案】(1)见解析(2)见解析

【解析】试题分析:(1)设交点为,则根据三角形中位线性质得,再利用线面平行判定定理得结论(2),再由正三角形性质得,因此由线面垂直判定定理得平面,即,再结合条件,利用线面垂直判定定理得平面,即得

试题解析:)证明:连接

交点为,连接

中,

分别为 中点,

平面

平面

平面

平面

平面

在正中,

是棱中点,

点,

平面

平面

平面

点,

平面

平面

平面

点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.

(1)证明线面、面面平行,需转化为证明线线平行.

(2)证明线面垂直,需转化为证明线线垂直.

(3)证明线线垂直,需转化为证明线面垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点在直线上,且抛物线截直线所得的弦的长为

Ⅰ)求抛物线的方程和的值.

Ⅱ)以弦为底边,以轴上点为顶点的三角形面积为,求点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知圆的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,取相同单位长度(其中 ),若倾斜角为且经过坐标原点的直线与圆相交于点点不是原点).

(1)求点的极坐标;

(2)设直线过线段的中点,且直线交圆两点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中, 的中点, .

(1)证明: 平面

(2)若,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在“新零售”模式的背景下,某大型零售公司咪推广线下分店,计划在市的区开设分店,为了确定在该区开设分店的个数,该公司对该市已开设分店听其他区的数据作了初步处理后得到下列表格.记表示在各区开设分店的个数, 表示这个个分店的年收入之和.

(个)

2

3

4

5

6

(百万元)

2.5

3

4

4.5

6

(1)该公司已经过初步判断,可用线性回归模型拟合的关系,求关于的线性回归方程

(2)假设该公司在区获得的总年利润(单位:百万元)与之间的关系为,请结合(1)中的线性回归方程,估算该公司应在区开设多少个分时,才能使区平均每个分店的年利润最大?

(参考公式: ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,动圆与圆外切,且与直线相切,记圆心的轨迹为曲线.

(1)求曲线的方程;

(2)设过定点为非零常数)的动直线与曲线交于两点,问:在曲线上是否存在点(与两点相异),当直线的斜率存在时,直线的斜率之和为定值.若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(1,2), =(2,﹣2).
(1)设 =4 + ,求
(2)若 + 垂直,求λ的值;
(3)求向量 方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin cos ﹣2 sin2 +
(1)求函数f(x)的单调减区间
(2)已知α∈( ),且f(α)= ,求f( )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图. 图中A点表示十月的平均最高气温约为,B点表示四月的平均最低气温约为. 下面叙述不正确的是 ( )

A. 各月的平均最低气温都在以上

B. 七月的平均温差比一月的平均温差大

C. 三月和十一月的平均最高气温基本相同

D. 平均最高气温高于的月份有5

查看答案和解析>>

同步练习册答案