精英家教网 > 高中数学 > 题目详情
E,F是椭圆的左、右焦点,l是椭圆的一条准线,点P在l上,则∠EPF的最大值是(   )
(A)15°        (B)30°    (C)60°       (D)45°
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的左、右两个焦点分别为F1、F2,离心率为,且抛物线与椭圆C1有公共焦点F2(1,0)。
(1)求椭圆和抛物线的方程;
(2)设A、B为椭圆上的两个动点,,过原点O作直线AB的垂线OD,垂足为D,求点D为轨迹方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆左、右焦点分别为F1、F2,点,点F2在线段PF1的中垂线上.
(1)求椭圆C的方程;
(2)设直线与椭圆C交于M、N两点,直线F2M与F2N的倾斜角分别为,且,求证:直线过定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
设椭圆的左右焦点分别为,离心率,点在直线:的左侧,且F2l的距离为
(1)求的值;
(2)设上的两个动点,,证明:当取最小值时,

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆>0)上一点(3,4),若,求椭圆方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设A、B是两个定点,|AB|=2,动点满足,若P点的轨迹是椭圆,则的取值范围是

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

、设P是椭圆上的点,若F1、F2是椭圆的两个焦点,则等于                        

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设是椭圆(a>b>0)的左焦点,直线为对应的准线,直线轴    

交于点, 为椭圆的长轴,已知,且.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)求证:对于任意的割线,恒有;
(Ⅲ)求△面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于椭圆,定义为椭圆的离心率,椭圆离心率的取值范围是,离心率越大椭圆越“扁”,离心率越小则椭圆越“圆”.若两椭圆的离心率相等,我们称两椭圆相似.已知椭圆与椭圆相似,则的值为  

查看答案和解析>>

同步练习册答案