精英家教网 > 高中数学 > 题目详情

【题目】经销商经销某种农产品,在一个销售季度内,每售出该产品获利润500元,未售出的产品,每亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了该农产品.以 (单位: )表示下一个销售季度内的市场需求量, (单位:元)表示下一个销售季度内经销该农产品的利润.

(1)将表示为的函数;

(2)根据直方图估计利润不少于57000元的概率;

(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量,则取,且的概率等于需求量落入的频率),求的数学期望.

【答案】(1)(2)0.7.

(3)的分布列为

.

【解析】试题分析:(1)根据题意分段求函数解析式,利用利润等于获利与亏损之和列函数关系式(2)先根据函数解析式求出利润不少于57000元对应自变量范围,再根据频率分布直方图确定自变量对应区间概率(3)先根据组中值得随机变量,再根据频率分布直方图确定对应概率,最后根据数学期望公式求期望

试题解析:(1)当时,

时, .

所以

(2)由(1)知利润不少于57000元当且仅当.

由直方图知需求量的频率为0.7,所以下一个销售季度内的利润不少于57000元的概率的估计值为0.7.

(3)依题意可得的分布列为

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线x﹣9y﹣8=0与曲线C:y=x3﹣px2+3x相交于A,B,且曲线C在A,B处的切线平行,则实数p的值为(
A.4
B.4或﹣3
C.﹣3或﹣1
D.﹣3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】10.已知{an}是正数组成的数列,a1=1,且点( ,an+1)(n∈N*)在函数y=x2+1的图象上.
(1)求数列{an}的通项公式.
(2)若数列{bn}满足b1=1,bn+1=bn+ ,求证:bn·bn+2< .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆中心在坐标原点,焦点在坐标轴上,且经过三点.

(1)求椭圆的方程;

(2)在直线上任取一点,连接,分别与椭圆交于两点,判断直线是否过定点?若是,求出该定点.若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数
(1)若 ,求 的单调区间;
(2)若 时, 恒成立,求 的范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数 ,则(
A.最大值为1,最小值为

B.最大值为1,无最小值
C.最小值为 ,无最大值
D.既无最大值也无最小值查看解析

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题共12分)已知函数

(1)讨论的单调性;

(2)是否存在常数,使对任意的和任意的都成立,若存在,求出t的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,前n项和Sn= an
(1)求a2 , a3 , 及{an}的通项公式.
(2)求{ }的前n项和Tn , 并证明:1≤Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列,其前项和为.

(1)若对任意的 组成公差为4的等差数列,且,求

(2)若数列是公比为)的等比数列, 为常数,

求证:数列为等比数列的充要条件为.

查看答案和解析>>

同步练习册答案