精英家教网 > 高中数学 > 题目详情
已知f(x)=x2-2ax+2
(1)若f(x)在区间[2a-1,2a+1]为单调函数,求a的取值范围;
(2)求f(x)在[2,4]上的最小值.
考点:二次函数的性质
专题:计算题,函数的性质及应用
分析:(1)配方法化简f(x)=(x-a)2+2-a2,从而得到对称轴方程为x=a;从而求a;
(2)因为f(x)的对称轴方程为x=a,可按对称轴与区间的关系分三种情况讨论即可.
解答: 解:(1)f(x)=(x-a)2+2-a2,对称轴方程为x=a;
f(x)在区间[2a-1,2a+1]为单调函数,
∴a≤2a-1或a≥2a+1,
∴a≥1或a≤-1;
(2)因为f(x)的对称轴方程为x=a,可分以下三种情况:
①当a<2时,f(x)在[2,4]上为增函数,
所以f(x)min=f(2)=6-4a;
②当2≤a<4时,f(a)为最小值,
f(x)min=2-a2; 
③当a≥4时,f(x)在[2,4]上为减函数,
所以f(x)min=f(4)=18-8a,
综上所述:f(x)min=
6-4a,a<2
2-a2,2≤a<4
18-8a,a≥4
点评:本题考查了二次函数的性质应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为e=
1
2
,A、B分别为椭圆的长轴和短轴的一个端点,|AB|=2
7

(1)求椭圆C的方程;
(2)若点E(0,1),问是否存在直线l与椭圆交于P、Q两点且|
PE
|=|
QE
|,若存在,求出直线的斜率的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知①对于任意的x∈R都有f(x+
3
)=f(x);
②对于任意的x∈R,都有f(
π
6
-x)=f(
π
6
+x).
则其解析式可以是f(x)=
 
(写出一个满足条件的解析式即可)

查看答案和解析>>

科目:高中数学 来源: 题型:

某品牌香水瓶的三视图如图(单位:cm),则该几何体的表面积为(  )
A、(95-
π
2
)cm2
B、(94-
π
2
)cm2
C、(94+
π
2
)cm2
D、(95+
π
2
)cm2

查看答案和解析>>

科目:高中数学 来源: 题型:

某地汽车最大保有量为60万辆,为了确保城市交通便捷畅通,汽车实际保有量x(单位:万辆)应小于60万辆,以便留出适当的空置量,已知汽车的年增长量y(单位:万辆)和实际保有量与空置率的乘积成正比,比例系数为k(k>0).
(空置量=最大保有量-实际保有量,空量率=
空置量
最大保有量

(Ⅰ)写出y关于x的函数关系式;
(Ⅱ)求汽车年增长量y的最大值;
(Ⅲ)当汽车年增长量达到最大值时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

从四个男生和两个女生中任选两人主持晚会,则至多有一个男生的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,曲线Γ由曲线C1
x2
a2
+
y2
b2
=1(a>b>0,y≤0)
和曲线C2
x2
a2
-
y2
b2
=1(y>0)
组成,其中点F1,F2为曲线C1所在圆锥曲线的焦点,点F3,F4为曲线C2所在圆锥曲线的焦点;
(1)若F2(2,0),F3(-6,0),求曲线Γ的方程;
(2)对于(1)中的曲线Γ,若过点F4作直线l平行于曲线C2的渐近线,交曲线C1于点A、B,求三角形ABF1的面积;
(3)如图,若直线l(不一定过F4)平行于曲线C2的渐近线,交曲线C1于点A、B,求证:弦AB的中点M必在曲线C2的另一条渐近线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

空间几何体的三视图如图所示,则该几何体的表面积和体积分别为(  )
A、6+2
5
,2
B、8+2
3
,1
C、8+2
5
,2
D、6+2
3
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

某市高三数学抽样考试中,对90分以上(含90分)的成绩进行统计,其频率分布图如图2所示,已知130-140分数段的人数为80,90-100分数段的人数为a,则图1所示程序框图的运算结果为(  )
A、700!B、710!
C、720!D、730!

查看答案和解析>>

同步练习册答案