精英家教网 > 高中数学 > 题目详情
给出以下命题:
(1)函数y=f(x)的图象与直线x=2最多有一个交点;
(2)当sinx≠0时,函数y=sin2x+
4
sin2x
的最小值是4

(3)函数y=
1
2x-1
-m
是奇函数的充要条件是m=
1
2

(4)满足f(
1
2
-x)=f(
3
2
+x)
和f(x-1)=-f(x)的函数f(x)一定是偶函数;
则其中正确命题的序号是
(1)(4)
(1)(4)
分析:(1)由函数的概念可判断(1)正确;
(2)由基本不等式可判断(2)的正误;
(3)令f(x)=
1
2x-1
-m,由f(x)+f(-x)=0可求得m,从而可判断其正误;
(4)利用函数的周期性与对称性可判断(4)的正误.
解答:解:(1)由函数的概念可知,自变量与相应的函数值是一一对应的,故(1)正确;
(2)由基本不等式“一正,二定,三等”可知sin2x≠
4
sin2x
,故(2)错误;
(3)令f(x)=
1
2x-1
-m,由f(x)+f(-x)=0可得:
1
2x-1
+
2x
1-2x
-2m=0,
∴m=-
1
2

∴(3)错误;
(4)∵f(x-1)=-f(x),
∴f(x-2)=-f(x-1)=f(x),即f(x)是以2为周期的函数;
f(
1
2
-x)=f(
3
2
+x)
,令
1
2
-x=t,则
3
2
+x=2-t,
∴f(t)=f(2-t),
∴f(x)关于x=1对称;
∴f(x)=f(2-x)=f(-x),
∴f(x)是偶函数,故(4)正确.
综上所述,其中正确命题的序号是(1)(4)
点评:本题考查基本不等式,考查必要条件、充分条件与充要条件的判断,考查函数的性质应用,属于综合题,是难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出以下命题:
(1)若
b
a
f(x)dx>0
,则f(x)>0; 
(2)
0
|sinx|dx=4

(3)f(x)的原函数为F(x),且F(x)是以T为周期的函数,则
a
0
f(x)dx=
a+T
T
f(x)dx

其中正确命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下命题:
(1)在△ABC中,sinA>sinB是A>B的必要不充分条件;
(2)在△ABC中,若tanA+tanB+tanC>0,则△ABC一定为锐角三角形;
(3)函数y=
x-1
+
1-x
与函数y=sinπx,x∈{1}是同一个函数;
(4)函数y=f(2x-1)的图象可以由函数y=f(2x)的图象按向量
a
=(1,0)
平移得到.
则其中正确命题的序号是
(2)(3)
(2)(3)
(把所有正确的命题序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下命题:
(1)?x∈R,使得sinx+cosx>1;
(2)函数f(x)=
sinx
x
在区间(0,
π
2
)
上是单调减函数;
(3)“x>1”是“|x|>1”的充分不必要条件;
(4)在△ABC中,“A>B”是“sinA>sinB”的必要不充分条件.
其中是真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下命题:
(1)若
b
a
f(x)dx>0
,则f(x)>0;  
(2)
0
|sinx|dx=4

(3)应用微积分基本定理,有
2
1
1
x
dx=F(2)-F(1)
,则F(x)=lnx;
(4)f(x)的原函数为F(x),且F(x)是以T为周期的函数,则
a
0
f(x)dx=
a+T
T
f(x)dx

其中正确命题的个数为(  )

查看答案和解析>>

同步练习册答案