(07年天津卷文)(14分)
设函数(),其中.
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)当时,求函数的极大值和极小值;
(Ⅲ)当时,证明存在,使得不等式对任意的恒成立.
本小题主要考查运用导数研究函数的性质、曲线的切线方程,函数的极值、解不等式等基础知识,考查综合分析和解决问题的能力及分类讨论的思想方法.
解析:(Ⅰ)当时,,得,且
,.
所以,曲线在点处的切线方程是,整理得
.
(Ⅱ)
.
令,解得或.
由于,以下分两种情况讨论.
(1)若,当变化时,的正负如下表:
因此,函数在处取得极小值,且
;
函数在处取得极大值,且
.
(2)若,当变化时,的正负如下表:
因此,函数在处取得极小值,且
;
函数在处取得极大值,且
.
(Ⅲ)证明:由,得,当时,
,.
由(Ⅱ)知,在上是减函数,要使,
只要
即
①
设,则函数在上的最大值为.
要使①式恒成立,必须,即或.
所以,在区间上存在,使得对任意的恒成立.
科目:高中数学 来源: 题型:
(07年天津卷文)(14分)
设椭圆的左、右焦点分别为是椭圆上的一点,,原点到直线的距离为.
(Ⅰ)证明;
(Ⅱ)求使得下述命题成立:设圆上任意点处的切线交椭圆于,两点,则.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com