精英家教网 > 高中数学 > 题目详情
1.关于x的函数f(x)=tan(x+φ)有以下几种说法:
①对任意的φ,f(x)都是非奇非偶函数;
②f(x)的图象关于($\frac{π}{2}$-φ,0)对称;
③f(x)的图象关于(π-φ,0)对称;
④f(x)是以π为最小正周期的周期函数.
其中不正确的说法的序号是①.

分析 根据正切函数的奇偶性对称性和周期性分别进行判断即可.

解答 解:①当φ=kπ时,f(x)=tan(x+φ)=tanx,为奇函数,则对任意的φ,f(x)都是非奇非偶函数,错误;
②由x+φ=$\frac{kπ}{2}$得x=$\frac{kπ}{2}$-φ,即f(x)的对称中心为($\frac{kπ}{2}$-φ,0),则当k=1时,对称中心为($\frac{π}{2}$-φ,0),则f(x)的图象关于($\frac{π}{2}$-φ,0)对称,正确;
③由x+φ=$\frac{kπ}{2}$得x=$\frac{kπ}{2}$-φ,即f(x)的对称中心为($\frac{kπ}{2}$-φ,0),则当k=2时,对称中心为(π-φ,0),则f(x)的图象关于(π-φ,0)对称,正确;
④f(x)是以π为最小正周期的周期函数,正确.
故不正确的是①,
故答案为:①.

点评 本题主要考查正切函数的性质,要求熟练掌握正切函数的奇偶性,周期性和对称性的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.(Ⅰ)计算0.0081${\;}^{\frac{1}{4}}$+(4${\;}^{-\frac{3}{4}}$)2+($\sqrt{8}$)${\;}^{-\frac{4}{3}}$-16-0.75的值.
(Ⅱ)计算lg25+lg2lg50+2${\;}^{1+lo{g}_{2}5}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.一平面直角坐标系中,已知伸缩变换φ:$\left\{\begin{array}{l}{x′=3x}\\{2y′=y}\end{array}\right.$,A($\frac{1}{3}$,-2)经过φ变换所得的点A′的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.过椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1的左焦点F1,作垂直于长轴的直线交椭圆于A、B两点,F2为右焦点,则|AF2|=$\frac{23}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=x+$\frac{1}{x-1}$(x>1)在x=a处取最小值,则实数a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求证:4n>(n+3)•3n-1(n∈N*,且n>2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=2+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,0<α<$\frac{π}{2}$),以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρcos2θ+2cosθ=ρ(ρ≥0,0≤θ<2π),直线l与曲线C交干A,B两点
(1)求证:OA⊥OB;
(2)若α=$\frac{π}{4}$,求直线与l平行的曲线C的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若|cosα|<|sinα|,则α∈($\frac{π}{4}$+kπ,$\frac{3π}{4}$+kπ)(k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知全集U=R,A={x||x-1|≥1},B={x|(x-2)(x-3)≥0},求:
(1)A∪B;
(2)(∁UA)∩(∁UB).

查看答案和解析>>

同步练习册答案