【题目】已知点A(0,﹣2),椭圆E: =1(a>b>0)的离心率为 ,F是椭圆的焦点,直线AF的斜率为 ,O为坐标原点. (Ⅰ)求E的方程;
(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.
【答案】解:(Ⅰ) 设F(c,0),由条件知 ,得 又 , 所以a=2,b2=a2﹣c2=1,故E的方程 .
(Ⅱ)依题意当l⊥x轴不合题意,故设直线l:y=kx﹣2,设P(x1 , y1),Q(x2 , y2)
将y=kx﹣2代入 ,得(1+4k2)x2﹣16kx+12=0,
当△=16(4k2﹣3)>0,即 时,
从而
又点O到直线PQ的距离 ,所以△OPQ的面积 = ,
设 ,则t>0, ,
当且仅当t=2,k=± 等号成立,且满足△>0,
所以当△OPQ的面积最大时,l的方程为:y= x﹣2或y=﹣ x﹣2
【解析】(Ⅰ)通过离心率得到a、c关系,通过A求出a,即可求E的方程;(Ⅱ)设直线l:y=kx﹣2,设P(x1 , y1),Q(x2 , y2)将y=kx﹣2代入 ,利用△>0,求出k的范围,利用弦长公式求出|PQ|,然后求出△OPQ的面积表达式,利用换元法以及基本不等式求出最值,然后求解直线方程.
科目:高中数学 来源: 题型:
【题目】已知y=f(x)是定义域为R的奇函数,当x∈[0,+∞)时,f(x)=x2﹣2x.
(Ⅰ)写出函数y=f(x)的解析式;
(Ⅱ)若方程f(x)=a恰有3个不同的解,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若以曲线上任意一点为切点作切线,曲线上总存在异于的点,以点为切点作切线,且,则称曲线具有“可平行性”,现有下列命题:
①函数的图象具有“可平行性”;
②定义在的奇函数的图象都具有“可平行性”;
③三次函数具有“可平行性”,且对应的两切点, 的横坐标满足;
④要使得分段函数的图象具有“可平行性”,当且仅当.
其中的真命题个数有()
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数(为自然对数的底数),, .
(1)若是的极值点,且直线分别与函数和的图象交于,求两点间的最短距离;
(2)若时,函数的图象恒在的图象上方,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的函数F(x)的图象,由指数函数f(x)=ax与幂函数g(x)=xb“拼接”而成.
(1)求F(x)的解析式;
(2)比较ab与ba的大小;
(3)已知(m+4)﹣b<(3﹣2m)﹣b , 求m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com