精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 ,过 的直线l与椭圆交于A,B两点,过Q(x0 , 0)(|x0|<a)的直线l'与椭圆交于M,N两点.

(1)当l的斜率是k时,用a,b,k表示出|PA||PB|的值;
(2)若直线l,l'的倾斜角互补,是否存在实数x0 , 使 为定值,若存在,求出该定值及x0 , 若不存在,说明理由.

【答案】
(1)解:椭圆 ,焦点在x轴上,焦距为2c,

设直线AB的方程:

,整理得:

由韦达定理可知:


(2)解:当直线MN的斜率存在时:设直线MN的方程:y=﹣k(x﹣x0),M(x3,y3),N(x4,y4).

,可知得:

由韦达定理可知:

由弦长公式可知:丨MN丨=

∴当x0=0时, 为常数

当直线MN的斜率不存在时: 时,

为定值.

综上:所以当x0=0时, 为常数


【解析】(1)由题意可知:椭圆的焦点在x轴上,设直线AB的方程: ,代入椭圆方程,由韦达定理 ,因此,由弦长公式可知: ,(2)当直线MN的斜率存在时:设直线MN的方程:y=﹣k(x﹣x0),代入椭圆方程,由韦达定理可知: ,由弦长公式求得丨MN丨,则 ,当x0=0时, 为常数,当直线MN的斜率不存在时: 时, 为定值,所以当x0=0时, 为常数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在一次考试中,5名同学的数学、物理成绩如表所示:

学生

A

B

C

D

E

数学(x)

89

91

93

95

97

物理(y)

87

89

89

92

93

(1)根据表中数据,求物理分y关于数学分x的回归方程,并试估计某同学数学考100分时,他的物理得分;

(2)要从4名数学成绩在90分以上的同学中选出2名参加一项活动,以X表示选中的同学中物理成绩高于90分的人数,试解决下列问题:

①求至少选中1名物理成绩在90分以下的同学的概率;

②求随机变变量X的分布列及数学期望

附:回归方程:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90℃,BC=2AD,△PAB与△PAD都是等边三角形,平面ABCD⊥平面PBD.
(I)证明:CD⊥平面PBD;
(II)求二面角A﹣PD﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数y=f(x)的导函数的图象如图所示,给出下列判断:

①函数y=f(x)在区间(-3,-1)内单调递增;②当x=2时,函数y=f(x)有极小值;

③函数y=f(x)在区间内单调递增;④当时,函数y=f(x)有极大值.

则上述判断中正确的是(  )

A. ①② B. ②③ C. ③④ D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数 的图象,只需将函数y=sin2x的图象(
A.向右平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向左平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】钝角三角形ABC的面积是 ,AB=1,BC= ,则AC=(
A.5
B.
C.2
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= sin ,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2 , 则m的取值范围是(
A.(﹣∞,﹣6)∪(6,+∞)
B.(﹣∞,﹣4)∪(4,+∞)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣∞,﹣1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一元二次不等式x2﹣ax﹣b<0的解集是{x|1<x<3}.
(1)求实数a,b的值;
(2)解不等式 >1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在[﹣m,m](m>0)上的函数f(x)= +xcosx(a>0,a≠1)的最大值和最小值分别是M、N,则M+N=

查看答案和解析>>

同步练习册答案