【题目】已知函数f(x)=x2+blnx和的图象在x=4处的切线互相平行.
(1)求b的值;
(2)求f(x)的极值.
【答案】(1);(2)极小值为
【解析】试题分析:(1)根据导数的几何意义分别求出函数与在处的导数,根据函数和的图象在处的切线相互平行,建立等量关系,求出即可;(2)分别令求得的范围,可得函数增区间, 求得的范围,可得函数的减区间,根据函数的单调性即可求得的极值.
试题解析:(1)对两个函数分别求导,得f′(x)=2x+,g′(x)==.
依题意,有f′(4)=g′(4),
即8+=6,∴b=-8.
(2)显然f(x)的定义域为(0,+∞).
由(1)知b=-8,
∴f′(x)=2x-=.
令f′(x)=0,解得x=2或x=-2(舍去).
∴当0<x<2时,f′(x)<0,当x>2时,f′(x)>0.
∴f(x)在(0,2)上是单调递减函数,在(2,+∞)上是单调递增函数.
∴f(x)在x=2时取得极小值,且极小值为f(2)=4-8ln2.
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系xOy中,曲线C1的参数方程为 (α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+ )=2 .
(1)写出C1的普通方程和C2的直角坐标方程;
(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(kR),且满足f(﹣1)=f(1).
(1)求k的值;
(2)若函数y=f(x)的图象与直线没有交点,求a的取值范围;
(3)若函数,x[0,log23],是否存在实数m使得h(x)最小值为0,若存在,求出m的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】环境污染已经触目惊心,环境质量已经成为“十三五”实现全面建成小康社会奋斗目标的短板和瓶颈。绵阳某化工厂每一天中污水污染指数与时刻(时)的函数关系为其中为污水治理调节参数,且
(1)若,求一天中哪个时刻污水污染指数最低;
(2)规定每天中的最大值作为当天的污水污染指数,要使该厂每天的污水污染指数不超过,则调节参数应控制在什么范围内?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的偶函数f(x)满足f(x)=f(2-x),当x∈[0,1]时f(x)=x2,则函数g(x)=|sin(πx)|-f(x)在区间[-1,3]上的所有零点的和为( )
A. 6 B. 7 C. 8 D. 10
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若在定义域内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)有“漂移点”.
(1)用零点存在定理证明:函数f(x)=x2+2x在[0,1]上有“漂移点”;
(2)若函数g(x)=lg()在(0,+∞)上有“漂移点”,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】双曲线x2﹣ =1(b>0)的左、右焦点分别为F1 , F2 , 直线l过F2且与双曲线交于A,B两点.
(1)直线l的倾斜角为 ,△F1AB是等边三角形,求双曲线的渐近线方程;
(2)设b= ,若l的斜率存在,且( ) =0,求l的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com