Èçͼ£¬ÒÑÖªÇúÏßC£ºy=
1
x
£¬Cn£ºy=
1
x+2-n
£¨n¡ÊN*£©£®´ÓCÉϵĵãQn£¨xn£¬yn£©×÷xÖáµÄ´¹Ïߣ¬½»CnÓÚµãPn£¬ÔÙ¹ýµãPn×÷yÖáµÄ´¹Ïߣ¬½»CÓÚµãQn+1£¨xn+1£¬yn+1£©É裬x1=1£¬an=xn+1-xn£¬bn=yn -yn+1£®
£¨1£©ÇóµãQ1¡¢Q2µÄ×ø±ê£»
£¨2£©ÇóÊýÁÐ{an} µÄͨÏʽ£»
£¨3£©¼ÇÊýÁÐ{an•yn+1} µÄÇ°nÏîºÍΪSn£¬ÇóÖ¤sn£¼
1
3
£®
·ÖÎö£º£¨1£©ÓÉQn£¨xn£¬yn£©£¬Qn+1£¨xn+1£¬yn+1£©£¬ÖªµãPnµÄ×ø±êΪ£¨xn£¬yn+1£©£¬ÓÉ´ËÄÜÇó³öµãQ1¡¢Q2µÄ×ø±ê£®
£¨2£©ÓÉQn£¬Qn+1ÔÚÇúÏßCÉÏ£¬Öªyn=
1
xn
£¬yn+1=
1
xn+1
£¬ÓÉPnÔÚÇúÏßCnÉÏ£¬Öªyn+1=
1
xn+2-n
£¬ÓÉ´ËÄÜÇó³öÊýÁÐ{an} µÄͨÏʽ£®
£¨3£©ÓÉxn=£¨xn-xn-1£©+£¨xn-1-xn-2£©+¡­+£¨x2-x1£©+x1=2-£¨n-1£©+2-£¨n-2£©+¡­+2-1+1=1-
1-(
1
2
)
n
1-
1
2
=2-21-n£¬Öªan•bn=£¨xn+1-xn£©•£¨yn-yn+1£©=2-n(
1
xn
-
1
xn+1
)
=
1
2n
(
1
2-21-n
-
1
2-2-n
)
=
1
(2•2n-2)• (2•2n-1)
£¬ÓÉ´ËÈëÊÖÄܹ»Ö¤Ã÷sn£¼
1
3
£®
½â´ð£º½â£º£¨1£©¡ßQn£¨xn£¬yn£©£¬Qn+1£¨xn+1£¬yn+1£©£¬
¡àµãPnµÄ×ø±êΪ£¨xn£¬yn+1£©
¡àQ1(1£¬1)£¬P(1£¬
2
3
) £¬Q2(
3
2
£¬
2
3
)
£®-----------------------------------£¨2·Ö£©
£¨2£©¡ßQn£¬Qn+1ÔÚÇúÏßCÉÏ£¬
¡àyn=
1
xn
£¬yn+1=
1
xn+1
£¬
ÓÖ¡ßPnÔÚÇúÏßCnÉÏ£¬
¡àyn+1=
1
xn+2-n
£¬--------------------------------£¨4·Ö£©
¡àxn+1=xn+2-n£¬
¡àan=2-n£®-----------------------------------------£¨6·Ö£©
£¨3£©xn=£¨xn-xn-1£©+£¨xn-1-xn-2£©+¡­+£¨x2-x1£©+x1
=2-£¨n-1£©+2-£¨n-2£©+¡­+2-1+1
=1-
1-(
1
2
)
n
1-
1
2

=2-21-n£®-------------------£¨9·Ö£©
¡àan•bn=£¨xn+1-xn£©•£¨yn-yn+1£©
=2-n(
1
xn
-
1
xn+1
)

=
1
2n
(
1
2-21-n
-
1
2-2-n
)

=
1
(2•2n-2)• (2•2n-1)
£¬
¡ß2•2n-2¡Ý2n£¬2•2n-1¡Ý3£¬
¡àanbn¡Ü
1
3•2n
£®--------------------------------£¨12·Ö£©
¡àSn=a1b1+a2b2+¡­+anbn
¡Ü
1
3¡Á2
+
1
3¡Á22
+¡­+
1
3¡Á2n
=
1
6
1-(
1
2
)
n
1-
1
2
=
1
3
(1-
1
2n
)£¼
1
3
-----------------------£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éµã×ø±êµÄÇ󷨡¢ÇóÊýÁеÄͨÏʽ¡¢ÇóÖ¤sn£¼
1
3
£®½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÚ¾òÌâÉèÖеÄÒþº¬Ìõ¼þ£¬ºÏÀíµØ½øÐеȼÛת»¯£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÒÑÖªÇúÏßC£ºy=
1
x
£¬Cn£ºy=
1
x+2-n
(n¡ÊN*)
£®´ÓCÉϵĵãQn£¨xn£¬yn£©×÷xÖáµÄ´¹Ïߣ¬½»CnÓÚµãPn£¬ÔÙ´ÓPn×÷yÖáµÄ´¹Ïߣ¬½»CÓÚµãQn+1£¨xn+1£¬yn+1£©£®Éèx1=1£¬an=xn+1-xn£¬bn=yn-yn+1£®
£¨I£©Çóa1£¬a2£¬a3µÄÖµ£»
£¨II£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨III£©Éè¡÷PiQiQi+1£¨i¡ÊN*£©ºÍÃæ»ýΪSi£¬¼Çf(n)=
n
i=1
Si
£¬ÇóÖ¤f(n)£¼
1
6
.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªÇúÏßC£ºy=
1
x
ÔÚµãP£¨1£¬1£©´¦µÄÇÐÏßÓëxÖá½»ÓÚµãQ1£¬¹ýµãQ1×÷xÖáµÄ´¹Ïß½»ÇúÏßCÓÚµãP1£¬ÇúÏßCÔÚµãP1´¦µÄÇÐÏßÓëxÖá½»ÓÚµãQ2£¬¹ýµãQ2×÷xÖáµÄ´¹Ïß½»ÇúÏßCÓÚµãP2£¬¡­£¬ÒÀ´ÎµÃµ½Ò»ÏµÁеãP1¡¢P2¡¢¡­¡¢Pn£¬ÉèµãPnµÄ×ø±êΪ£¨xn£¬yn£©£¨n¡ÊN*£©£®
£¨¢ñ£©ÇóÊýÁÐ{xn}µÄͨÏʽ£»
£¨¢ò£©ÇóÈý½ÇÐÎOPnPn+1µÄÃæ»ýS¡÷OPnPn+1
£¨¢ó£©ÉèÖ±ÏßOPnµÄбÂÊΪkn£¬ÇóÊýÁÐ{nkn}µÄÇ°nÏîºÍSn£¬²¢Ö¤Ã÷Sn£¼
4
9
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2006•ÄϾ©¶þÄ££©Èçͼ£¬ÒÑÖªÇúÏßC£ºy=
1
x
£¬Cn£ºy=
1
x+2-n
(n¡ÊN*)
£®´ÓCÉϵĵãQn£¨xn£¬yn£©×÷xÖáµÄ´¹Ïߣ¬½»CnÓÚµãPn£¬ÔÙ´ÓµãPn×÷yÖáµÄ´¹Ïߣ¬½»CÓÚµãQn+1£¨xn+1£¬yn+1£©£¬Éèx1=1£¬an=xn+1-xn£¬bn=yn-yn+1£®
£¨¢ñ£©ÇóQ1£¬Q2µÄ×ø±ê£»
£¨¢ò£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ó£©¼ÇÊýÁÐ{an•bn}µÄÇ°nÏîºÍΪSn£¬ÇóÖ¤£ºSn£¼
1
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÒÑÖªÇúÏßC£ºy=x2£¨0¡Üx¡Ü1£©£¬O£¨0£¬0£©£¬Q£¨1£¬0£©£¬R£¨1£¬1£©£®È¡Ï߶ÎOQµÄÖеãA1£¬¹ýA1×÷xÖáµÄ´¹Ïß½»ÇúÏßCÓÚP1£¬¹ýP1×÷yÖáµÄ´¹Ïß½»RQÓÚB1£¬¼Ça1Ϊ¾ØÐÎA1P1B1QµÄÃæ»ý£®·Ö±ðÈ¡Ï߶ÎOA1£¬P1B1µÄÖеãA2£¬A3£¬¹ýA2£¬A3·Ö±ð×÷xÖáµÄ´¹Ïß½»ÇúÏßCÓÚP2£¬P3£¬¹ýP2£¬P3·Ö±ð×÷y ÖáµÄ´¹Ïß½»A1P1£¬RB1ÓÚB2£¬B3£¬¼Ça2ΪÁ½¸ö¾ØÐÎA2P2B2A1Óë¾ØÐÎA3P3B3B1µÄÃæ»ýÖ®ºÍ£®ÒÔ´ËÀàÍÆ£¬¼ÇanΪ2n-1¸ö¾ØÐÎÃæ»ýÖ®ºÍ£¬´Ó¶øµÃÊýÁÐ{an}£¬ÉèÕâ¸öÊýÁеÄÇ°nÏîºÍΪSn£®
£¨¢ñ£© Çóa2Óëan£»
£¨¢ò£© ÇóSn£¬²¢Ö¤Ã÷Sn£¼
13
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸