精英家教网 > 高中数学 > 题目详情

【题目】已知数列满足:,且成等比数列,成等差数列.

1)行列式,且,求证:数列是等差数列;

2)在(1)的条件下,若不是常数列,是等比数列,

①求的通项公式;

②设是正整数,若存在正整数,使得成等差数列,求的最小值.

【答案】1)见解析;(2)①;②6

【解析】

(1)根据行列式的代数余子式可得,再根据等差中项可证;

(2)①设等差数列的公差为,等比数列的公比为,运用等差数列和等比数列的性质和通项公式,解方程组即可得到所求通项;

②由等差数列的中项性质和分类讨论,即可得到最小值.

证明:因为,

所以,,

因为,所以,,

所以数列是等差数列.

①由(1)知数列是等差数列,设公差为(),设等比数列 的公比为,

因为成等比数列,成等差数列,

所以,

所以,且,

结合化简可得,

解得,

所以,,

,.

②因为成等差数列,

所以,即,

由于,且均为正整数,

所以,,所以,

可得,即,

时,,,所以不等式不成立,

时,成立,

时,,即时,则有,

所以的最小值为6,当且仅当时, 取得最小值6.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中,角所对的边分别为.向量,且

(1)若,求角的值;

(2)求角的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线过点,过点作直线与抛物线交于不同两点,过轴的垂线分别与直线交于点,其中为坐标原点.

1)求抛物线的方程;

2)写出抛物线的焦点坐标和准线方程;

3)求证:为线段的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学中有许多形状优美、寓意美好的曲线,曲线C就是其中之一(如图).给出下列三个结论:

①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);

②曲线C上任意一点到原点的距离都不超过

③曲线C所围成的“心形”区域的面积小于3.

其中,所有正确结论的序号是

A. B. C. ①②D. ①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左.右焦点分别为为坐标原点.

(1)若斜率为的直线交椭圆于点,若线段的中点为,直线的斜率为,求的值;

(2)已知点是椭圆上异于椭圆顶点的一点,延长直线分别与椭圆交于点,设直线的斜率为,直线的斜率为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数.

(1)当时,证明:函数只有一个零点;

(2)若函数存在两个不同的极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若在区间上不是单调函数,求实数的范围;

(2)若对任意,都有恒成立,求实数的取值范围;

(3)当时,设,对任意给定的正实数,曲线上是否存在两点,使得是以为坐标原点)为直角顶点的直角三角形,而且此三角形斜边中点在轴上?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数a为实数

求函数的单调区间;

若存在实数a,使得对任意恒成立,求实数m的取值范围.提示:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线为焦点,且过点

1)求双曲线与其渐近线的方程

2)若斜率为1的直线与双曲线相交于两点,且为坐标原点),求直线的方程

查看答案和解析>>

同步练习册答案