精英家教网 > 高中数学 > 题目详情
4.已知曲线C1的极坐标方程p2=$\frac{12}{3co{s}^{2}θ+4si{n}^{2}θ}$,曲线C1经过坐标变换$\left\{{\begin{array}{l}{x=2x'}\\{y=\sqrt{3}y'}\end{array}}$得到曲线C2,直线l的参数方程为$\left\{{\begin{array}{l}{x=2+\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}$(t为参数,t∈R)
(Ⅰ)求直线l的普通方程和曲线C1的直角坐标方程;
(Ⅱ)若P为曲线C2上的点,求点P到直线l的距离的最大值.

分析 (Ⅰ)直线l消去参数t,能求出直线l的普通方程,由ρsinθ=y,ρcosθ=x,能求出曲线C1的直角坐标方程.
(Ⅱ)由坐标变换求出曲线C2的方程为x'2+y'2=1,求出圆心C2到直线l的距离,由此能求出点P到直线l的距离的最大值.

解答 解:(Ⅰ)∵直线l的参数方程为$\left\{{\begin{array}{l}{x=2+\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}$(t为参数,t∈R),
消去参数t,得直线l的普通方程为:x-y-2=0…(2分)
∵曲线C1的极坐标方程ρ2=$\frac{12}{3co{s}^{2}θ+4si{n}^{2}θ}$,
∴3ρ2cos2θ+4ρ2sin2θ=12,
∵ρsinθ=y,ρcosθ=x,
∴曲线C1的直角坐标方程为:3x2+4y2=12,即$\frac{x^2}{4}+\frac{y^2}{3}=1$…(4分)
(Ⅱ)∵曲线C1经过坐标变换$\left\{{\begin{array}{l}{x=2x'}\\{y=\sqrt{3}y'}\end{array}}$得到曲线C2
∴由题意知,曲线C2的方程为x'2+y'2=1,其圆心C2(0,0),半径r=1…(8分)
∴圆心C2(0,0)到直线l:x-y-2=0的距离$d=\frac{2}{{\sqrt{2}}}=\sqrt{2}$…(10分)
∴点P到直线l的距离的最大值为$d+1=\sqrt{2}+1$…(12分)

点评 本题考查直线l的普通方程和曲线C1的直角坐标方程的求法,考查点P到直线l的距离的最大值的求法,是中档题,解题时要注意极坐标方程、参数方程、普通方程互化公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知数列{an}中,a1=$\frac{4}{3}$,且有an+1=an2-an+1,n∈N*
(I)求证:数列{an}是递增数列;
(Ⅱ)记Sn=$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n}}$,Tn=$\frac{1}{{a}_{1}}•\frac{1}{{a}_{2}}•…•\frac{1}{{a}_{n}}$求证:Sn+3Tn=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.王华大学毕业后在一家公司做推销员,他对自己的工作业绩进行汇总时得到如下的一个表格:
工作时间(单位:月)与月推销金额(单位:万元)的有关数据:
工作时间x 35679
月推销金额y23345
(1)画出散点图,判断月推销金额y与工作时间x是否有线性相关关系;
(2)如果y与x之间具有线性相关关系,求出线性回归方程;
(3)若王华的工作时间为12个月,试估计他的月推销金额.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求证:${C}_{n}^{0}$+2${C}_{n}^{1}$+3${C}_{n}^{2}$+…+(n+1)${C}_{n}^{n}$=2n+n•2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知F1,F2是椭圆$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{3}$=1的两个焦点,过F1的直线交此椭圆于A,B两点,若|AF2|+|BF2|=8,则|AB|=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.方程(lga+lgx)•(lga+2lgx)=4有两个小于1的正根α,β.
(1)若lgα+lgβ=-$\frac{9}{2}$,求a的值;
(2)若|lgα-lgβ|≤2$\sqrt{3}$,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知四棱锥A-BCDE的底面是边长为4的正方形,面ABC⊥底面BCDE,且AB=AC=4,则四棱锥A-BCDE外接球的表面积为$\frac{112π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设极坐标的极点是直角坐标系的原点,极轴是x轴的正半轴,取相同的单位长度,已知直线1的参数方程为$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,且α≠kπ+$\frac{π}{2}$,k∈z),圆C的极坐标方程为p=2$\sqrt{2}$cos(θ+$\frac{π}{4}$),且圆C与直线l不相交.
(I)求直线l的普通方程;
(Ⅱ)设曲线C1的参数方程为$\left\{\begin{array}{l}{x=a}\\{y=-\frac{2}{\sqrt{a}}}\end{array}\right.$ (a为参数),点P在曲线C1上.求点P到直线1距离的最小值及取得最小值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在平行四边形ABCD中,AC=5,BD=4,则$\overrightarrow{AB}$•$\overrightarrow{BC}$=(  )
A.$\frac{41}{4}$B.-$\frac{41}{4}$C.$\frac{9}{4}$D.-$\frac{9}{4}$

查看答案和解析>>

同步练习册答案