精英家教网 > 高中数学 > 题目详情
不等式|x+3|-|x-1|≤a2-5a的解集非空,则实数a的取值范围是
a≥4或a≤1
a≥4或a≤1
分析:令f(x)=|x+3|-|x-1|,可求得f(x)min,依题意,a2-5a≥f(x)min,解之即可.
解答:解:令f(x)=|x+3|-|x-1|,
则当x<-3时,f(x)=-x-3+x-1=-4;
当-3≤x≤1时,f(x)=2x+2∈[-4,4];
当x>1时,f(x)=x+3-x+1=4;
∴f(x)min=-4.
∵不等式|x+3|-|x-1|≤a2-5a的解集非空,
∴a2-5a≥f(x)min=-4,
∴a2-5a+4≥0.
解得:a≥4或a≤1.
∴实数a的取值范围是a≥4或a≤1.
故答案为:a≥4或a≤1.
点评:本题考查绝对值不等式,考查构造函数思想与方程思想,考查理解题意与推理运算的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3、关于x的不等式|x-3|+|x-4|<a的解集不是空集,a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.不等式|x+3|-|x-2|≥3的解集为
 

B.如图,已知Rt△ABC的两条直角边AC,BC的长分别为3cm,4cm,以AC为直径的圆与AB交于点D,则
BD
DA
=
 

C.已知圆C的参数方程为
x=cosα
y=1+sinα
(a为参数)以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ=1,则直线l与圆C的交点的直角坐标系为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式(x-3)
5-x
x+2
≥0
的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式|x-3|≥5的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式|x+3|-|x-1|≥-2的解集为(  )
A、(-2,+∞)B、(0,+∞)C、[-2,+∞)D、[0,+∞)

查看答案和解析>>

同步练习册答案