精英家教网 > 高中数学 > 题目详情
已知△ABC的三个顶点A、B、C及△ABC所在平面内的一点P,若
PA
+
PB
+
PC
=
0
若实数λ满足
AB
+
AC
AP
,则实数λ等于
3
3
分析:利用向量的减法,化简即得到结果.
解答:解:由题意得,(
PB
-
PA
)+(
PC
-
PA
)=-λ
PA

(λ-2)
PA
+
PB
+
PC
=
0

∴λ=3.
故答案为:3.
点评:本题考查向量在几何中的应用,在计算中,只需将向量都化成以P为起点就可以比较得出解答了.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的三个顶点A、B、C及△ABC所在平面内一点P,若
PA
+
PB
+
PC
=
0
,若实数λ满足
AB
+
AC
AP
,则实数λ等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点A,B,C及平面内一点P满足:
PA
+
PB
+
PC
=
0
,若实数λ 满足:
AB
+
AC
AP
,则λ的值为(  )
A、3
B、
2
3
C、2
D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点A(2,1)、B(-2,3)、C(-3,0),求
(1)BC边所在直线的一般式方程.
(2)BC边上的高AD所在的直线的一般式方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点A(-1,-2),B(2,0),C(1,3).
(1)求AB边上的高CD所在直线的方程;
(2)求△ABC的面积.

查看答案和解析>>

同步练习册答案